
Barcode.Swift
Swift バーコード生成ライブラリ

マニュアル

バージョン 1.0

有限会社 パオ・アット・オフィス

https://www.pao.ac/

Barcode.Swift マニュアル

目次

1. サーバーサイドで、18種のバーコードを自在に生成。

2. はじめに

3. できること

4. 導入方法

5. クイックスタート — 最初の1本を生成しよう

6. 実践サンプル集

7. APIリファレンス

8. 動作環境

9. ライセンス・お問い合わせ

- 2 -

Barcode.Swift マニュアル

サーバーサイドで、18種のバーコードを自在に生成。

ユーザーズマニュアル

バージョン 1.0 — 2026年2月

有限会社 パオ・アット・オフィス

https://www.pao.ac/

- 3 -

Barcode.Swift マニュアル

はじめに

Barcode.Swiftとは

Barcode.Swift は、Swift で書かれた Pure Swift
バーコード生成ライブラリです。C++やその他の外部依存を必要とせず、Swift Package Manager
で導入するだけですぐに18種類のバーコードを生成できます。

サーバーサイド Swift（Vapor など）でバーコード画像を動的に生成し、Web
アプリケーションや帳票出力に活用できます。

import BarcodePao

let qr = QRCode(outputFormat: BarcodeBase.FORMAT_PNG)

try qr.draw(code: "https://www.pao.ac/", size: 300)

let base64 = try qr.getImageBase64()

// → "..."

特長

特長 説明

Pure Swift C/C++ 依存なし。Swift Package Manager だけで完結

18種対応 1D/2D バーコード 18種をすべてサポート

3形式出力 PNG、JPEG、SVG いずれの形式でも出力可能

カスタマイズ 色、テキスト表示、均等配置など細かく制御

サーバー対応 Vapor、Hummingbird など主要フレームワークに対応

クロスプラットフォーム macOS / Linux で動作

対応バーコード一覧

カテゴリ バーコード

1D 工業用 Code39, Code93, Code128, NW-7 (Codabar)

1D 物流用 ITF, Matrix 2of5, NEC 2of5

GS1 系 GS1-128, GS1 DataBar 標準型/限定型/拡張型

商品コード JAN-8 (EAN-8), JAN-13 (EAN-13), UPC-A, UPC-E

郵便 郵便カスタマバーコード

2D QRコード, DataMatrix, PDF417

- 4 -

Barcode.Swift マニュアル

できること

PNG画像出力 — Base64でそのまま返せる

PNG 画像を Base64 エンコードした文字列（Data URI）で取得できます。HTML の
タグにそのまま埋め込むことが可能です。

let bc = Code128(outputFormat: BarcodeBase.FORMAT_PNG)

bc.showText = true

try bc.draw(code: "Hello-2026", width: 400, height: 100)

let dataUri = try bc.getImageBase64()

// → "..."

SVGベクター出力 — 拡大しても美しい

SVG 形式で出力すればベクターなので、拡大しても劣化しません。

let bc = Code39(outputFormat: BarcodeBase.FORMAT_SVG)

try bc.draw(code: "HELLO", width: 300, height: 80)

let svg = try bc.getSVG()

// → "<svg xmlns=..."

バイト列出力 — ファイル保存やHTTPレスポンスに

getImageMemory() でバイト列 [UInt8] を取得し、ファイルに保存したり HTTP
レスポンスとして直接返したりできます。

let qr = QRCode(outputFormat: BarcodeBase.FORMAT_PNG)

try qr.draw(code: "Test", size: 200)

let bytes = try qr.getImageMemory()

try Data(bytes).write(to: URL(fileURLWithPath: "qr.png"))

カスタマイズ — 色もテキストも思いのままに

前景色・背景色の変更、テキスト表示のON/OFF、テキストの均等配置など、さまざまなカスタマイズが可能です。

- 5 -

Barcode.Swift マニュアル

let bc = Code128(outputFormat: BarcodeBase.FORMAT_PNG)

bc.showText = true

bc.textEvenSpacing = true

bc.setForegroundColor(0, 0, 128, 255) //

bc.setBackgroundColor(255, 255, 240, 255) //

try bc.draw(code: "Custom", width: 400, height: 120)

- 6 -

Barcode.Swift マニュアル

導入方法

ダウンロード

製品サイトからサンプルプロジェクトを含む ZIP ファイルをダウンロードしてください。

https://www.pao.ac/barcode.swift/

Swift Package Manager でインストール

Package.swift の dependencies に追加します：

dependencies: [

 .package(url: "https://github.com/pao-company/barcode-swift.git", from: "1.0.0"),

]

ターゲットの dependencies にも追加します：

.target(name: "YourApp", dependencies: [

 .product(name: "BarcodePao", package: "barcode-swift"),

]),

ファイル構成

barcode-pao/

├── Package.swift

├── Roboto-Regular.ttf ←

└── Sources/BarcodePao/

 ├── BarcodeBase.swift ←

 ├── BarcodeBase1D.swift ← 1D

 ├── BarcodeBase2D.swift ← 2D

 ├── RenderPNG.swift ← PNG/JPEG

 ├── RenderSVG.swift ← SVG

 ├── Font.swift ← TTF

 ├── Code39.swift ← Code39

 ├── QR.swift ← QR

 └── ... (18)

- 7 -

Barcode.Swift マニュアル

クイックスタート — 最初の1本を生成しよう

QRコードをPNGで生成

import BarcodePao

// 1:

let qr = QRCode(outputFormat: BarcodeBase.FORMAT_PNG)

// 2: →

try qr.draw(code: "https://www.pao.ac/", size: 300)

let base64 = try qr.getImageBase64()

// HTML data URI

print("")

1DバーコードをSVGで生成

import BarcodePao

let c128 = Code128(outputFormat: BarcodeBase.FORMAT_SVG)

c128.showText = true

try c128.draw(code: "SWIFT-2026", width: 400, height: 100)

let svg = try c128.getSVG()

REST APIサーバーで提供

Vapor を使って QR コードを返す簡単なエンドポイント：

import Vapor

import BarcodePao

app.get("qr") { req -> Response in

 let code = req.query[String.self, at: "code"] ?? "Hello"

 let qr = QRCode(outputFormat: BarcodeBase.FORMAT_PNG)

 try qr.draw(code: code, size: 300)

 let bytes = try qr.getImageMemory()

 var headers = HTTPHeaders()

 headers.add(name: .contentType, value: "image/png")

 return Response(status: .ok, headers: headers,

 body: .init(data: Data(bytes)))

}

- 8 -

Barcode.Swift マニュアル

実践サンプル集

1次元バーコード — 物流・工業の定番

// Code39 — +

let c39 = Code39(outputFormat: BarcodeBase.FORMAT_PNG)

c39.showText = true

try c39.draw(code: "HELLO-123", width: 400, height: 100)

// Code93 — Code39

let c93 = Code93(outputFormat: BarcodeBase.FORMAT_PNG)

try c93.draw(code: "TEST-93", width: 400, height: 100)

// Code128 — ASCII

let c128 = Code128(outputFormat: BarcodeBase.FORMAT_PNG)

c128.showText = true

try c128.draw(code: "Hello-2026", width: 400, height: 100)

// NW-7 (Codabar)

let nw7 = NW7(outputFormat: BarcodeBase.FORMAT_PNG)

try nw7.draw(code: "A12345B", width: 400, height: 100)

// ITF (Interleaved 2 of 5) —

let itf = ITF(outputFormat: BarcodeBase.FORMAT_PNG)

try itf.draw(code: "1234567890", width: 400, height: 100)

2次元バーコード — 大容量データを小さな面積に

// QR

let qr = QRCode(outputFormat: BarcodeBase.FORMAT_PNG)

qr.errorCorrectionLevel = QR_ECC_H //

try qr.draw(code: "https://www.pao.ac/", size: 300)

// DataMatrix —

let dm = DataMatrix(outputFormat: BarcodeBase.FORMAT_PNG)

try dm.draw(code: "Hello DataMatrix", size: 300)

// PDF417 —

let pdf = PDF417(outputFormat: BarcodeBase.FORMAT_PNG)

try pdf.draw(code: "Hello PDF417", width: 400, height: 200)

GS1系バーコード — 流通のインフラ

- 9 -

Barcode.Swift マニュアル

// GS1-128 — AI

let gs1 = GS1_128(outputFormat: BarcodeBase.FORMAT_PNG)

try gs1.draw(code: "(01)04912345123459(10)ABC123", width: 500, height: 100)

// GS1 DataBar

let db14 = GS1DataBar14(outputFormat: BarcodeBase.FORMAT_PNG)

try db14.draw(code: "0112345678901231", width: 400, height: 80)

// GS1 DataBar

let dbl = GS1DataBarLimited(outputFormat: BarcodeBase.FORMAT_PNG)

try dbl.draw(code: "0100012345678905", width: 400, height: 80)

// GS1 DataBar

let dbe = GS1DataBarExpanded(outputFormat: BarcodeBase.FORMAT_PNG)

try dbe.draw(code: "(01)00012345678905(10)ABC123", width: 500, height: 80)

商品・郵便バーコード — 身の回りのバーコード

// JAN-8 (EAN-8)

let j8 = JAN8(outputFormat: BarcodeBase.FORMAT_PNG)

j8.showText = true

try j8.draw(code: "1234567", width: 200, height: 100)

// JAN-13 (EAN-13) — POS

let j13 = JAN13(outputFormat: BarcodeBase.FORMAT_PNG)

j13.showText = true

try j13.draw(code: "490123456789", width: 300, height: 120)

// UPC-A —

let upca = UPC_A(outputFormat: BarcodeBase.FORMAT_PNG)

upca.showText = true

try upca.draw(code: "01234567890", width: 300, height: 120)

// —

let yubin = YubinCustomer(outputFormat: BarcodeBase.FORMAT_PNG)

try yubin.draw(code: "10200091-13-2-3", height: 50)

- 10 -

Barcode.Swift マニュアル

APIリファレンス

共通メソッド（全バーコード）

メソッド 説明

init(outputFormat: String) バーコードオブジェクトを作成

getImageBase64() throws -> String Base64 Data URI を返す（PNG/JPEG）

getSVG() throws -> String SVG 文字列を返す

getImageMemory() throws -> [UInt8] バイト列を返す（PNG/JPEG）

setForegroundColor(_ r: Int, _ g: Int, _ b: Int, _ a: Int) 前景色を設定

setBackgroundColor(_ r: Int, _ g: Int, _ b: Int, _ a: Int) 背景色を設定

出力フォーマット定数:

定数 値

BarcodeBase.FORMAT_PNG "png"

BarcodeBase.FORMAT_JPEG "jpeg"

BarcodeBase.FORMAT_SVG "svg"

1次元バーコード共通プロパティ

プロパティ 型 説明

showText Bool テキスト表示 ON/OFF（デフォルト: false）

textEvenSpacing Bool テキストの均等配置（デフォルト: false）

Code39

let bc = Code39(outputFormat: format)

bc.showStartStop = true // /

try bc.draw(code: "HELLO-123", width: 400, height: 100)

使用可能文字: 0-9, A-Z, -, ., , $, /, +, %

Code93

- 11 -

Barcode.Swift マニュアル

let bc = Code93(outputFormat: format)

try bc.draw(code: "TEST-93", width: 400, height: 100)

Code128

let bc = Code128(outputFormat: format)

bc.showText = true

try bc.draw(code: "Hello-2026", width: 400, height: 100)

ASCII 全域（0x00-0x7F）に対応。

GS1-128

let bc = GS1_128(outputFormat: format)

try bc.draw(code: "(01)04912345123459(10)ABC123", width: 500, height: 100)

AI（Application Identifier）を括弧で囲んで指定。

NW-7（Codabar）

let bc = NW7(outputFormat: format)

try bc.draw(code: "A12345B", width: 400, height: 100)

スタート/ストップ文字: A, B, C, D

ITF（Interleaved 2 of 5）

let bc = ITF(outputFormat: format)

try bc.draw(code: "1234567890", width: 400, height: 100)

数字のみ、偶数桁。

Matrix 2of5

let bc = Matrix2of5(outputFormat: format)

try bc.draw(code: "12345", width: 400, height: 100)

NEC 2of5

- 12 -

Barcode.Swift マニュアル

let bc = NEC2of5(outputFormat: format)

try bc.draw(code: "12345", width: 400, height: 100)

JAN-8（EAN-8）

let bc = JAN8(outputFormat: format)

bc.showText = true

try bc.draw(code: "1234567", width: 200, height: 100)

7桁 + チェックデジット自動計算。

JAN-13（EAN-13）

let bc = JAN13(outputFormat: format)

bc.showText = true

try bc.draw(code: "490123456789", width: 300, height: 120)

12桁 + チェックデジット自動計算。

UPC-A

let bc = UPC_A(outputFormat: format)

bc.showText = true

try bc.draw(code: "01234567890", width: 300, height: 120)

UPC-E

let bc = UPC_E(outputFormat: format)

bc.showText = true

try bc.draw(code: "0123456", width: 200, height: 100)

GS1 DataBar 標準型

let bc = GS1DataBar14(outputFormat: format)

try bc.draw(code: "0112345678901231", width: 400, height: 80)

GS1 DataBar 限定型

- 13 -

Barcode.Swift マニュアル

let bc = GS1DataBarLimited(outputFormat: format)

try bc.draw(code: "0100012345678905", width: 400, height: 80)

GS1 DataBar 拡張型

let bc = GS1DataBarExpanded(outputFormat: format)

try bc.draw(code: "(01)00012345678905(10)ABC123", width: 500, height: 80)

郵便カスタマバーコード

let bc = YubinCustomer(outputFormat: format)

try bc.draw(code: "10200091-13-2-3", height: 50)

幅は自動計算されます。

QRコード

let qr = QRCode(outputFormat: format)

qr.errorCorrectionLevel = QR_ECC_M // L, M, Q, H

qr.version = 0 // 0 = , 1-40

try qr.draw(code: "Hello", size: 300)

定数 値 誤り訂正能力

QR_ECC_L 0 約7%

QR_ECC_M 1 約15%

QR_ECC_Q 2 約25%

QR_ECC_H 3 約30%

DataMatrix

let dm = DataMatrix(outputFormat: format)

dm.stringEncoding = "gs1" // GS1 DataMatrix

try dm.draw(code: "Hello DataMatrix", size: 300)

PDF417

- 14 -

Barcode.Swift マニュアル

let pdf = PDF417(outputFormat: format)

try pdf.draw(code: "Hello PDF417", width: 400, height: 200)

- 15 -

Barcode.Swift マニュアル

動作環境

項目 要件

Swift 5.10 以上

OS macOS 14+, Linux (Ubuntu 22.04+, CentOS Stream 9+)

依存 swift-png (tayloraswift)

- 16 -

Barcode.Swift マニュアル

ライセンス・お問い合わせ

使用許諾

本ソフトウェアは商用ライセンスです。ご購入いただいたライセンスに基づき、お客様の開発プロジェクトでご利用い
ただけます。

ライセンス

プラン 価格（税込） 内容

通常ライセンス ¥22,000 1開発者、無制限プロジェクト

3年サポート ¥9,900 メールサポート + アップデート

5年サポート ¥13,750 メールサポート + アップデート

お問い合わせ:

・Web: https://www.pao.ac/
・Email: info@pao.ac

Copyright (c) 2026 有限会社 パオ・アット・オフィス. All rights reserved.

- 17 -

