
Barcode.Rust (WASM)
C++ WASMエンジン Rust ラッパー

マニュアル

バージョン 1.0

有限会社 パオ・アット・オフィス

https://www.pao.ac/

Barcode.Rust (WASM) マニュアル

目次

1. C++ バーコードエンジンを Rust から手軽に利用。

2. 1.1 C++ WASM版とは

3. 1.2 特長

4. 1.3 対応バーコード一覧

5. 2.1 動作要件

6. 2.2 ダウンロード

7. 2.3 ファイル構成

8. 3.1 QRコードをPNGで生成

9. 3.2 SVGベクター出力

10. 3.3 REST APIサーバー（axum）

11. 4.1 共通メソッド

12. 4.2 1次元バーコード共通メソッド

13. 4.3 各バーコード型

14. 使用許諾

15. お問い合わせ

- 2 -

Barcode.Rust (WASM) マニュアル

C++ バーコードエンジンを Rust から手軽に利用。

ユーザーズマニュアル

バージョン 1.0 — 2026年2月

有限会社 パオ・アット・オフィス

https://www.pao.ac/

1. はじめに

・1.1 C++ WASM版とは
・1.2 特長
・1.3 対応バーコード一覧

2. 導入方法

・2.1 動作要件
・2.2 ダウンロード
・2.3 ファイル構成

3. クイックスタート

・3.1 QRコードをPNGで生成
・3.2 SVGベクター出力
・3.3 REST APIサーバー（axum）

4. APIリファレンス

・4.1 共通メソッド
・4.2 1次元バーコード共通メソッド
・4.3 各バーコード型

5. Pure Rust版との違い

6. 動作環境

7. ライセンス・お問い合わせ

- 3 -

Barcode.Rust (WASM) マニュアル

1.1 C++ WASM版とは

Barcode.Rust (C++ WASMエンジン) は、C++ で書かれた高速バーコードエンジンを Node.js 経由 で Rust
から利用するラッパーライブラリです。

C++ バーコードエンジンは Emscripten で WebAssembly にコンパイルされており、Node.js
をサブプロセスとして起動して WASM を実行します。Rust 側は JSON
で命令を送り、生成されたバーコード（Base64 PNG や SVG 文字列）を受け取ります。

Rust → JSON → node _barcode_runner.mjs → barcode.mjs → WASM → JSON → Rust

Pure Rust版と同じ18種のバーコードを生成でき、外部依存は serde と serde_json のみです。

use barcode_pao_wasm::{QR, FORMAT_PNG};

let qr = QR::new(FORMAT_PNG);

let result = qr.draw("https://www.pao.ac/", 300)?;

// result "data:image/png;base64,..."

- 4 -

Barcode.Rust (WASM) マニュアル

1.2 特長

特長 説明

C++ 高速エンジン 実績あるC++バーコードエンジンをそのまま利用。高品質な出力

最小依存 serde / serde_json のみ。標準ライブラリの std::process::Command で Node.js を起動

Node.js ブリッジ Emscripten WASM を Node.js 経由で実行。インストールは node のみ

シンプルAPI draw() が直接 Base64/SVG 文字列を返す。2ステップで完結

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG。用途で使い分け可能

- 5 -

Barcode.Rust (WASM) マニュアル

1.3 対応バーコード一覧

1次元バーコード（15種類）

バーコード コンストラクタ

Code39 Code39::new()

Code93 Code93::new()

Code128 Code128::new()

GS1-128 GS1128::new()

NW-7 (Codabar) NW7::new()

ITF ITF::new()

Matrix 2of5 Matrix2of5::new()

NEC 2of5 NEC2of5::new()

JAN-8 (EAN-8) Jan8::new()

JAN-13 (EAN-13) Jan13::new()

UPC-A UPCA::new()

UPC-E UPCE::new()

GS1 DataBar 標準型 GS1DataBar14::new()

GS1 DataBar 限定型 GS1DataBarLimited::new()

GS1 DataBar 拡張型 GS1DataBarExpanded::new()

特殊バーコード（1種類）

バーコード コンストラクタ

郵便カスタマバーコード YubinCustomer::new()

2次元バーコード（3種類）

バーコード コンストラクタ

QRコード QR::new()

DataMatrix DataMatrix::new()

PDF417 PDF417::new()

- 6 -

Barcode.Rust (WASM) マニュアル

2.1 動作要件

項目 要件

Rust 1.70 以降 (edition 2021)

Node.js 16 以降

OS Windows / macOS / Linux

Node.js は WASM エンジンの実行に必要です。node コマンドが PATH に含まれている必要があります。

- 7 -

Barcode.Rust (WASM) マニュアル

2.2 ダウンロード

https://www.pao.ac/barcode.rust/#download

C++ WASM版のダウンロードパッケージには、Easy 2 Steps と All-in-One の2つのサンプルが含まれています。

- 8 -

Barcode.Rust (WASM) マニュアル

2.3 ファイル構成

barcode_rust_wasm_cpp/

├── easy2steps/

│ ├── Cargo.toml

│ ├── src/

│ │ └── main.rs # QRaxum

│ └── templates/

│ └── index.html # Web

├── allinone/

│ ├── Cargo.toml

│ ├── src/

│ │ └── main.rs # 18

│ └── templates/

│ └── index.html

└── barcode_pao_wasm/ # WASM

 ├── Cargo.toml

 ├── src/

 │ ├── lib.rs

 │ └── wrapper.rs # Rust → WASM

 └── wasm/

 ├── barcode.wasm # C++ WASM

 ├── barcode.js # EmscriptenJS

 ├── barcode.mjs # ES

 └── _barcode_runner.mjs # Node.js

起動方法

cd barcode_rust_wasm_cpp/easy2steps

cargo run

→ http://localhost:5722

- 9 -

Barcode.Rust (WASM) マニュアル

3.1 QRコードをPNGで生成

use barcode_pao_wasm::{QR, FORMAT_PNG};

fn main() -> Result<(), Box<dyn std::error::Error>> {

 // Step 1: QR

 let qr = QR::new(FORMAT_PNG);

 // Step 2: → Base64

 let result = qr.draw("https://www.pao.ac/", 300)?;

 // result "data:image/png;base64,..."

 println!("Base64: {}...", &result[..50]);

 Ok(())

}

ポイント: Pure Rust版と異なり、draw() が直接 Base64 文字列を返します。get_image_base64()
を呼ぶ必要はありません。

- 10 -

Barcode.Rust (WASM) マニュアル

3.2 SVGベクター出力

use barcode_pao_wasm::{Code128, FORMAT_SVG};

let mut code = Code128::new(FORMAT_SVG);

code.base_1d.set_show_text(true);

code.base_1d.set_text_even_spacing(true);

let svg = code.draw("Hello-2026", 400, 100)?;

// svg "<svg xmlns="...">...</svg>"

- 11 -

Barcode.Rust (WASM) マニュアル

3.3 REST APIサーバー（axum）

use axum::{extract::Query, routing::get, Json, Router};

use barcode_pao_wasm::{QR, FORMAT_PNG};

use serde::Deserialize;

use std::collections::HashMap;

#[derive(Deserialize)]

struct Params {

 code: Option<String>,

}

async fn handle(Query(p): Query<Params>) -> Json<HashMap<&'static str, String>> {

 let code = p.code.unwrap_or("https://www.pao.ac/".into());

 let qr = QR::new(FORMAT_PNG);

 let b64 = qr.draw(&code, 300).unwrap();

 Json(HashMap::from([("base64", b64)]))

}

#[tokio::main]

async fn main() {

 let app = Router::new().route("/api/qr", get(handle));

 let listener = tokio::net::TcpListener::bind("0.0.0.0:5722").await.unwrap();

 axum::serve(listener, app).await.unwrap();

}

- 12 -

Barcode.Rust (WASM) マニュアル

4.1 共通メソッド

すべてのバーコード型の base（BarcodeWasmBase）で使用できるメソッドです。

set_output_format(format: &str)

出力形式を設定します（コンストラクタで指定済みの場合は不要）。

定数 説明

FORMAT_PNG PNG画像（Base64）

FORMAT_JPEG JPEG画像（Base64）

FORMAT_SVG SVGベクター

set_foreground_color(r, g, b, a: u8)

前景色（バーの色）を RGBA で設定します。

code.base_1d.base.set_foreground_color(0, 0, 128, 255);

set_background_color(r, g, b, a: u8)

背景色を RGBA で設定します。

code.base_1d.base.set_background_color(255, 255, 240, 255);

- 13 -

Barcode.Rust (WASM) マニュアル

4.2 1次元バーコード共通メソッド

1次元バーコード（郵便カスタマバーコードを除く）の base_1d（Barcode1DBase）で使用できるメソッドです。

draw(code: &str, width: u32, height: u32) -> Result<String, String>

バーコードを生成し、Base64 または SVG 文字列を返します。

let result = code.draw("HELLO123", 400, 100)?;

set_show_text(show: bool)

バーコード下部のテキスト表示を設定します。

set_text_even_spacing(even: bool)

テキストの均等割付を設定します。

set_text_font_scale(scale: f64)

テキストのフォントサイズ倍率を設定します。

set_fit_width(fit: bool)

指定幅にぴったり収めるかどうかを設定します。

set_px_adjust_black(adj: i32) / set_px_adjust_white(adj: i32)

黒バー / 白スペースの幅を微調整します。

- 14 -

Barcode.Rust (WASM) マニュアル

4.3 各バーコード型

Code39

use barcode_pao_wasm::{Code39, FORMAT_PNG};

let mut code = Code39::new(FORMAT_PNG);

code.base_1d.set_show_text(true);

code.set_show_start_stop(true);

let result = code.draw("HELLO123", 400, 100)?;

固有メソッド: set_show_start_stop(show: bool)

Code128

let mut code = Code128::new(FORMAT_PNG);

code.base_1d.set_show_text(true);

code.set_code_mode("AUTO"); // AUTO / A / B / C

let result = code.draw("Hello123", 400, 100)?;

固有メソッド: set_code_mode(mode: &str)

GS1-128

let mut gs1 = GS1128::new(FORMAT_PNG);

gs1.base_1d.set_show_text(true);

let result = gs1.draw("[01]04912345123459[10]ABC123", 500, 120)?;

NW-7 (Codabar)

let mut code = NW7::new(FORMAT_PNG);

code.set_show_start_stop(true);

let result = code.draw("A1234567A", 400, 100)?;

JAN-13 / JAN-8

- 15 -

Barcode.Rust (WASM) マニュアル

let mut jan = Jan13::new(FORMAT_PNG);

jan.base_1d.set_show_text(true);

jan.set_extended_guard(true);

jan.base_1d.set_text_even_spacing(false);

let result = jan.draw("491234567890", 300, 100)?;

固有メソッド: set_extended_guard(ext: bool)

GS1 DataBar 標準型

let mut db = GS1DataBar14::new(FORMAT_PNG);

db.set_symbol_type("OMNIDIRECTIONAL");

let result = db.draw("1234567890128", 200, 80)?;

固有メソッド: set_symbol_type(t: &str) — "OMNIDIRECTIONAL", "STACKED", "STACKED_OMNIDIRECTIONAL"

GS1 DataBar 拡張型

let mut db = GS1DataBarExpanded::new(FORMAT_PNG);

db.set_symbol_type("UNSTACKED");

let result = db.draw("[01]90012345678908[10]ABC123", 400, 80)?;

固有メソッド: set_symbol_type(t: &str), set_no_of_columns(cols: u32)

郵便カスタマバーコード

let yubin = YubinCustomer::new(FORMAT_PNG);

let result = yubin.draw("27500263-29-2-401", 25)?;

高さのみ指定（幅は自動計算）。

QRコード

let mut qr = QR::new(FORMAT_PNG);

qr.set_error_correction_level("M"); // L / M / Q / H

qr.set_version(0); // 0=

let result = qr.draw("https://www.pao.ac/", 300)?;

固有メソッド: set_error_correction_level(level: &str), set_version(v: i32), set_encode_mode(mode: &str)

DataMatrix

- 16 -

Barcode.Rust (WASM) マニュアル

let mut dm = DataMatrix::new(FORMAT_PNG);

dm.base_2d.set_string_encoding("utf-8");

let result = dm.draw("Hello World", 200)?;

固有メソッド: set_code_size(size: &str), set_encode_scheme(scheme: &str)

PDF417

let mut pdf = PDF417::new(FORMAT_PNG);

pdf.set_error_level(2);

pdf.set_columns(4);

let result = pdf.draw("Hello World", 400, 100)?;

固有メソッド: set_error_level(level: i32), set_columns(cols: i32), set_rows(rows: i32), set_aspect_ratio(ratio: f64),
set_y_height(h: i32)

PDF417 の draw() は幅と高さの両方を指定します。

項目 Pure Rust版 C++ WASM版

エンジン Pure Rust 実装 C++ (Emscripten WASM)

依存 image, ab_glyph serde, serde_json, Node.js

API方式 フィールド設定 + draw + get_image_base64 セッターメソッド + draw（結果を直接返す）

出力取得 get_image_base64(), get_svg(), get_image_memory()draw() が直接返す

提供形態 Pure Rust ライブラリ WASM バイナリ

価格 22,000円 11,000円

API の主な違い

Pure Rust版:

let mut qr = QR::new(FORMAT_PNG);

qr.draw("Hello", 300)?;

let b64 = qr.base_2d.base.get_image_base64()?;

C++ WASM版:

let qr = QR::new(FORMAT_PNG);

let b64 = qr.draw("Hello", 300)?;

- 17 -

Barcode.Rust (WASM) マニュアル

項目 要件

Rust 1.70 以降 (edition 2021)

Node.js 16 以降

OS Windows / macOS / Linux

依存クレート: serde, serde_json（Cargo.toml に記載済み、自動取得）。

- 18 -

Barcode.Rust (WASM) マニュアル

使用許諾

Barcode.Rust
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書

この使用許諾書は、利用者様がお使いのパソコンにおいて Barcode.Rust
を使用する場合に同意しなければならない契約書です。

2. 同意

利用者様が Barcode.Rust を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入

製品版を使用して開発を行う場合、1 台の開発用コンピュータにつき 1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権

Barcode.Rust の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責

Barcode.Rust
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項

Barcode.Rust
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。

- 19 -

Barcode.Rust (WASM) マニュアル

お問い合わせ

有限会社 パオ・アット・オフィス

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.rust/

メール info@pao.ac

Barcode.Rust (C++ WASMエンジン) ユーザーズマニュアル

バージョン 1.0 — 2026年2月

© 2026 有限会社 パオ・アット・オフィス

- 20 -

