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1.1 C++ WASM版とは

Barcode.Rust  (C++  WASMエンジン)  は、C++  で書かれた高速バーコードエンジンを  Node.js  経由  で  Rust
から利用するラッパーライブラリです。

C++  バーコードエンジンは  Emscripten  で  WebAssembly  にコンパイルされており、Node.js
をサブプロセスとして起動して  WASM  を実行します。Rust  側は  JSON
で命令を送り、生成されたバーコード（Base64 PNG や SVG 文字列）を受け取ります。

Rust  → JSON → node _barcode_runner.mjs → barcode.mjs → WASM → JSON → Rust

Pure Rust版と同じ18種のバーコードを生成でき、外部依存は serde と serde_json のみです。

use barcode_pao_wasm::{QR, FORMAT_PNG};

let qr = QR::new(FORMAT_PNG);

let result = qr.draw("https://www.pao.ac/", 300)?;

// result  "data:image/png;base64,..." 
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1.2 特長

特長 説明

C++ 高速エンジン 実績あるC++バーコードエンジンをそのまま利用。高品質な出力

最小依存 serde / serde_json のみ。標準ライブラリの std::process::Command で Node.js を起動

Node.js ブリッジ Emscripten WASM を Node.js 経由で実行。インストールは node のみ

シンプルAPI draw() が直接 Base64/SVG 文字列を返す。2ステップで完結

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG。用途で使い分け可能
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1.3 対応バーコード一覧

1次元バーコード（15種類）

バーコード コンストラクタ

Code39 Code39::new()

Code93 Code93::new()

Code128 Code128::new()

GS1-128 GS1128::new()

NW-7 (Codabar) NW7::new()

ITF ITF::new()

Matrix 2of5 Matrix2of5::new()

NEC 2of5 NEC2of5::new()

JAN-8 (EAN-8) Jan8::new()

JAN-13 (EAN-13) Jan13::new()

UPC-A UPCA::new()

UPC-E UPCE::new()

GS1 DataBar 標準型 GS1DataBar14::new()

GS1 DataBar 限定型 GS1DataBarLimited::new()

GS1 DataBar 拡張型 GS1DataBarExpanded::new()

特殊バーコード（1種類）

バーコード コンストラクタ

郵便カスタマバーコード YubinCustomer::new()

2次元バーコード（3種類）

バーコード コンストラクタ

QRコード QR::new()

DataMatrix DataMatrix::new()

PDF417 PDF417::new()
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2.1 動作要件

項目 要件

Rust 1.70 以降 (edition 2021)

Node.js 16 以降

OS Windows / macOS / Linux

Node.js は WASM エンジンの実行に必要です。node コマンドが PATH に含まれている必要があります。
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2.2 ダウンロード

https://www.pao.ac/barcode.rust/#download

C++ WASM版のダウンロードパッケージには、Easy 2 Steps と All-in-One の2つのサンプルが含まれています。
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2.3 ファイル構成

barcode_rust_wasm_cpp/

├── easy2steps/

│   ├── Cargo.toml

│   ├── src/

│   │   └── main.rs            # QRaxum

│   └── templates/

│       └── index.html         # Web

├── allinone/

│   ├── Cargo.toml

│   ├── src/

│   │   └── main.rs            # 18

│   └── templates/

│       └── index.html

└── barcode_pao_wasm/          # WASM

    ├── Cargo.toml

    ├── src/

    │   ├── lib.rs

    │   └── wrapper.rs         # Rust → WASM 

    └── wasm/

        ├── barcode.wasm       # C++ WASM

        ├── barcode.js         # EmscriptenJS

        ├── barcode.mjs        # ES

        └── _barcode_runner.mjs # Node.js

起動方法

cd barcode_rust_wasm_cpp/easy2steps

cargo run

# → http://localhost:5722
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3.1 QRコードをPNGで生成

use barcode_pao_wasm::{QR, FORMAT_PNG};

fn main() -> Result<(), Box<dyn std::error::Error>> {

    // Step 1: QR

    let qr = QR::new(FORMAT_PNG);

    // Step 2:  → Base64

    let result = qr.draw("https://www.pao.ac/", 300)?;

    // result  "data:image/png;base64,..." 

    println!("Base64: {}...", &result[..50]);

    Ok(())

}

ポイント:  Pure  Rust版と異なり、draw()  が直接  Base64  文字列を返します。get_image_base64()
を呼ぶ必要はありません。
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3.2 SVGベクター出力

use barcode_pao_wasm::{Code128, FORMAT_SVG};

let mut code = Code128::new(FORMAT_SVG);

code.base_1d.set_show_text(true);

code.base_1d.set_text_even_spacing(true);

let svg = code.draw("Hello-2026", 400, 100)?;

// svg  "<svg xmlns="...">...</svg>" 
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3.3 REST APIサーバー（axum）

use axum::{extract::Query, routing::get, Json, Router};

use barcode_pao_wasm::{QR, FORMAT_PNG};

use serde::Deserialize;

use std::collections::HashMap;

#[derive(Deserialize)]

struct Params {

    code: Option<String>,

}

async fn handle(Query(p): Query<Params>) -> Json<HashMap<&'static str, String>> {

    let code = p.code.unwrap_or("https://www.pao.ac/".into());

    let qr = QR::new(FORMAT_PNG);

    let b64 = qr.draw(&code, 300).unwrap();

    Json(HashMap::from([("base64", b64)]))

}

#[tokio::main]

async fn main() {

    let app = Router::new().route("/api/qr", get(handle));

    let listener = tokio::net::TcpListener::bind("0.0.0.0:5722").await.unwrap();

    axum::serve(listener, app).await.unwrap();

}
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4.1 共通メソッド

すべてのバーコード型の base（BarcodeWasmBase）で使用できるメソッドです。

set_output_format(format: &str)

出力形式を設定します（コンストラクタで指定済みの場合は不要）。

定数 説明

FORMAT_PNG PNG画像（Base64）

FORMAT_JPEG JPEG画像（Base64）

FORMAT_SVG SVGベクター

set_foreground_color(r, g, b, a: u8)

前景色（バーの色）を RGBA で設定します。

code.base_1d.base.set_foreground_color(0, 0, 128, 255);

set_background_color(r, g, b, a: u8)

背景色を RGBA で設定します。

code.base_1d.base.set_background_color(255, 255, 240, 255);
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4.2 1次元バーコード共通メソッド

1次元バーコード（郵便カスタマバーコードを除く）の base_1d（Barcode1DBase）で使用できるメソッドです。

draw(code: &str, width: u32, height: u32) -> Result&lt;String, String&gt;

バーコードを生成し、Base64 または SVG 文字列を返します。

let result = code.draw("HELLO123", 400, 100)?;

set_show_text(show: bool)

バーコード下部のテキスト表示を設定します。

set_text_even_spacing(even: bool)

テキストの均等割付を設定します。

set_text_font_scale(scale: f64)

テキストのフォントサイズ倍率を設定します。

set_fit_width(fit: bool)

指定幅にぴったり収めるかどうかを設定します。

set_px_adjust_black(adj: i32) / set_px_adjust_white(adj: i32)

黒バー / 白スペースの幅を微調整します。

- 14 -



Barcode.Rust (WASM) マニュアル

4.3 各バーコード型

Code39

use barcode_pao_wasm::{Code39, FORMAT_PNG};

let mut code = Code39::new(FORMAT_PNG);

code.base_1d.set_show_text(true);

code.set_show_start_stop(true);

let result = code.draw("HELLO123", 400, 100)?;

固有メソッド: set_show_start_stop(show: bool)

Code128

let mut code = Code128::new(FORMAT_PNG);

code.base_1d.set_show_text(true);

code.set_code_mode("AUTO");  // AUTO / A / B / C

let result = code.draw("Hello123", 400, 100)?;

固有メソッド: set_code_mode(mode: &str)

GS1-128

let mut gs1 = GS1128::new(FORMAT_PNG);

gs1.base_1d.set_show_text(true);

let result = gs1.draw("[01]04912345123459[10]ABC123", 500, 120)?;

NW-7 (Codabar)

let mut code = NW7::new(FORMAT_PNG);

code.set_show_start_stop(true);

let result = code.draw("A1234567A", 400, 100)?;

JAN-13 / JAN-8
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let mut jan = Jan13::new(FORMAT_PNG);

jan.base_1d.set_show_text(true);

jan.set_extended_guard(true);

jan.base_1d.set_text_even_spacing(false);

let result = jan.draw("491234567890", 300, 100)?;

固有メソッド: set_extended_guard(ext: bool)

GS1 DataBar 標準型

let mut db = GS1DataBar14::new(FORMAT_PNG);

db.set_symbol_type("OMNIDIRECTIONAL");

let result = db.draw("1234567890128", 200, 80)?;

固有メソッド: set_symbol_type(t: &str) — "OMNIDIRECTIONAL", "STACKED", "STACKED_OMNIDIRECTIONAL"

GS1 DataBar 拡張型

let mut db = GS1DataBarExpanded::new(FORMAT_PNG);

db.set_symbol_type("UNSTACKED");

let result = db.draw("[01]90012345678908[10]ABC123", 400, 80)?;

固有メソッド: set_symbol_type(t: &str), set_no_of_columns(cols: u32)

郵便カスタマバーコード

let yubin = YubinCustomer::new(FORMAT_PNG);

let result = yubin.draw("27500263-29-2-401", 25)?;

高さのみ指定（幅は自動計算）。

QRコード

let mut qr = QR::new(FORMAT_PNG);

qr.set_error_correction_level("M");  // L / M / Q / H

qr.set_version(0);                    // 0=

let result = qr.draw("https://www.pao.ac/", 300)?;

固有メソッド: set_error_correction_level(level: &str), set_version(v: i32), set_encode_mode(mode: &str)

DataMatrix
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let mut dm = DataMatrix::new(FORMAT_PNG);

dm.base_2d.set_string_encoding("utf-8");

let result = dm.draw("Hello World", 200)?;

固有メソッド: set_code_size(size: &str), set_encode_scheme(scheme: &str)

PDF417

let mut pdf = PDF417::new(FORMAT_PNG);

pdf.set_error_level(2);

pdf.set_columns(4);

let result = pdf.draw("Hello World", 400, 100)?;

固有メソッド:  set_error_level(level:  i32),  set_columns(cols:  i32),  set_rows(rows:  i32),  set_aspect_ratio(ratio:  f64),
set_y_height(h: i32)

PDF417 の draw() は幅と高さの両方を指定します。

項目 Pure Rust版 C++ WASM版

エンジン Pure Rust 実装 C++ (Emscripten WASM)

依存 image, ab_glyph serde, serde_json, Node.js

API方式 フィールド設定 + draw + get_image_base64 セッターメソッド + draw（結果を直接返す）

出力取得 get_image_base64(), get_svg(), get_image_memory()draw() が直接返す

提供形態 Pure Rust ライブラリ WASM バイナリ

価格 22,000円 11,000円

API の主な違い

Pure Rust版:

let mut qr = QR::new(FORMAT_PNG);

qr.draw("Hello", 300)?;

let b64 = qr.base_2d.base.get_image_base64()?;

C++ WASM版:

let qr = QR::new(FORMAT_PNG);

let b64 = qr.draw("Hello", 300)?;
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項目 要件

Rust 1.70 以降 (edition 2021)

Node.js 16 以降

OS Windows / macOS / Linux

依存クレート: serde, serde_json（Cargo.toml に記載済み、自動取得）。
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使用許諾

Barcode.Rust
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書

この使用許諾書は、利用者様がお使いのパソコンにおいて  Barcode.Rust
を使用する場合に同意しなければならない契約書です。

2. 同意

利用者様が Barcode.Rust を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入

製品版を使用して開発を行う場合、1  台の開発用コンピュータにつき  1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権

Barcode.Rust の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責

Barcode.Rust
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項

Barcode.Rust
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。
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お問い合わせ

有限会社 パオ・アット・オフィス

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.rust/

メール info@pao.ac

Barcode.Rust (C++ WASMエンジン) ユーザーズマニュアル
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