
Barcode.Ruby
Ruby バーコード生成ライブラリ

マニュアル

バージョン 1.0

有限会社 パオ・アット・オフィス

https://www.pao.ac/

Barcode.Ruby マニュアル

目次

1. サーバーサイドで、18種のバーコードを自在に生成。

2. はじめに

3. できること

4. 導入方法

5. クイックスタート — 最初の1本を生成しよう

6. 実践サンプル集

7. APIリファレンス

8. 動作環境

9. ライセンス・お問い合わせ

- 2 -

Barcode.Ruby マニュアル

サーバーサイドで、18種のバーコードを自在に生成。

ユーザーズマニュアル

バージョン 1.0 — 2026年2月

有限会社 パオ・アット・オフィス

https://www.pao.ac/

- 3 -

Barcode.Ruby マニュアル

はじめに

Barcode.Rubyとは

物流倉庫のピッキングリスト、医療現場の検体ラベル、ECサイトの出荷伝票——。

バーコードはあらゆる業務システムの「最後の1ミリ」を担っています。

Barcode.Ruby は、そのバーコードを Pure Ruby で生成するライブラリです。

C拡張不要、ネイティブコンパイル不要。require 'barcode_pao' だけでインストールでき、1次元・2次元あわせて
全18種 のバーコードを、PNG画像・JPEG画像・SVGベクター で出力できます。

Rubyの柔軟性とシンプルさをそのまま活かせるため、SinatraやRailsなどのWebフレームワークに組み込めば、手軽に
バーコード生成APIを構築できます。

require 'barcode_pao'

qr = BarcodePao::QRCode.new(BarcodePao::FORMAT_PNG)

qr.draw("https://www.pao.ac/", 300)

base64 = qr.get_image_base64

たった3行で、QRコードが Base64 文字列になって返ってきます。

特長

特長 説明

Pure Ruby 外部C拡張不要。依存gemは chunky_png と ttfunk のみ

サーバーサイド特化 Sinatra / Rails と組み合わせるだけで REST API バーコードサーバーが完成

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG、サムネイルにはJPEG。用途で使い分け可能

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

attr_accessor パターン Ruby らしい直感的なプロパティ設定。bc.show_text = true で簡潔に

豊富なカスタマイズ 色、テキスト、バー幅調整、均等割付まで細かく制御可能

対応バーコード一覧

1次元バーコード（14種類）

- 4 -

Barcode.Ruby マニュアル

バーコード コンストラクタ 用途

Code39 Code39.new 工場の部品ラベル、軍事規格

Code93 Code93.new Code39の高密度版。郵便・物流

Code128 Code128.new 物流の標準。ASCII全文字対応

GS1-128 GS1128.new 医薬品・物流。ロット番号管理

NW-7 NW7.new 宅配便の送り状、図書館

ITF ITF.new 段ボール箱の集合包装用

Matrix 2of5 Matrix2of5.new 工業用途

NEC 2of5 NEC2of5.new 日本の工業現場

JAN-8 JAN8.new 小さな商品用

JAN-13 JAN13.new 日本の商品バーコードの標準

UPC-A UPCA.new 北米の商品コード

UPC-E UPCE.new UPC-Aの短縮版

GS1 DataBar 標準型 GS1DataBar14.new 青果・精肉売り場

GS1 DataBar 限定型 GS1DataBarLimited.new 小型商品向け

GS1 DataBar 拡張型 GS1DataBarExpanded.new クーポン・特売情報

郵便バーコード（1種類）

バーコード コンストラクタ 用途

郵便カスタマバーコード YubinCustomer.new 郵便物の住所バーコード

2次元バーコード（3種類）

バーコード コンストラクタ 用途

QRコード QRCode.new URL、決済、名刺交換

DataMatrix DataMatrix.new 電子部品の超小型マーキング

PDF417 PDF417.new 運転免許証、搭乗券

- 5 -

Barcode.Ruby マニュアル

できること

PNG画像出力 — Base64でそのまま返せる

draw でバーコードを生成し、get_image_base64 を呼ぶだけで Base64エンコードされたPNG画像
が返ってきます。HTMLの タグにそのまま埋め込めるので、REST
APIの戻り値としてそのままクライアントに返せます。

qr = BarcodePao::QRCode.new(BarcodePao::FORMAT_PNG)

qr.draw("Hello World", 300)

base64 = qr.get_image_base64

"..."

SVGベクター出力 — 拡大しても美しい

出力形式を FORMAT_SVG
にするだけで、ベクター形式のSVG文字列が得られます。どれだけ拡大しても線がぼやけないため、印刷用途に最適
です。

bc = BarcodePao::Code128.new(BarcodePao::FORMAT_SVG)

bc.draw("Hello-2026", 400, 100)

svg = bc.get_svg

"<svg xmlns="...">...</svg>"

バイト列出力 — ファイル保存やHTTPレスポンスに

get_image_memory を使えば、PNG/JPEG のバイト列を直接取得できます。

bc = BarcodePao::Code39.new(BarcodePao::FORMAT_PNG)

bc.draw("HELLO", 400, 100)

image_bytes = bc.get_image_memory

File.binwrite("barcode.png", image_bytes)

カスタマイズ — 色もテキストも思いのままに

- 6 -

Barcode.Ruby マニュアル

bc.set_foreground_color(0, 0, 128, 255) #

bc.set_background_color(255, 255, 240, 255) #

bc.show_text = true

bc.text_font_scale = 1.2

bc.text_even_spacing = true

bc.px_adjust_black = -1

bc.px_adjust_white = 1

bc.fit_width = true

- 7 -

Barcode.Ruby マニュアル

導入方法

ダウンロード

https://www.pao.ac/barcode.ruby/#download

パッケージ 内容 こんな方に

Easy 2 Steps QRコード生成の最小RESTサーバー まずは動かしてみたい方

All-in-One 全18種対応のフル機能RESTサーバー 本格的に評価したい方

ファイル構成

barcode_ruby_pure/

├── easy2steps/

│ ├── Gemfile

│ ├── app.rb

│ └── views/index.erb

├── allinone/

│ ├── Gemfile

│ ├── app.rb

│ ├── views/index.erb

│ └── public/

└── barcode_pao/

 ├── lib/barcode_pao.rb

 ├── lib/barcode_pao/...

 └── Roboto-Regular.ttf

起動方法

cd barcode_ruby_pure/easy2steps

bundle install

ruby app.rb

→ http://localhost:5740

- 8 -

Barcode.Ruby マニュアル

クイックスタート — 最初の1本を生成しよう

QRコードをPNGで生成

require 'barcode_pao'

qr = BarcodePao::QRCode.new(BarcodePao::FORMAT_PNG)

qr.error_correction_level = BarcodePao::QR_ECC_M

qr.draw("https://www.pao.ac/", 300)

base64 = qr.get_image_base64

puts "Base64: #{base64[0..50]} ..."

image_bytes = qr.get_image_memory

File.binwrite("qr.png", image_bytes)

puts "Saved: qr.png"

1DバーコードをSVGで生成

require 'barcode_pao'

bc = BarcodePao::Code128.new(BarcodePao::FORMAT_SVG)

bc.show_text = true

bc.text_even_spacing = true

bc.draw("Hello-2026", 400, 100)

svg = bc.get_svg

File.write("code128.svg", svg)

REST APIサーバーで提供

- 9 -

Barcode.Ruby マニュアル

require 'sinatra'

require 'json'

require 'barcode_pao'

get '/api/qr' do

 content_type :json

 code = params[:code] || "https://www.pao.ac/"

 qr = BarcodePao::QRCode.new(BarcodePao::FORMAT_PNG)

 qr.draw(code, 300)

 base64 = qr.get_image_base64

 { base64: base64 }.to_json

end

- 10 -

Barcode.Ruby マニュアル

実践サンプル集

1次元バーコード

Code39 —

bc = BarcodePao::Code39.new(BarcodePao::FORMAT_PNG)

bc.show_text = true

bc.show_start_stop = true

bc.draw("HELLO123", 400, 100)

Code128 —

bc = BarcodePao::Code128.new(BarcodePao::FORMAT_PNG)

bc.show_text = true

bc.code_mode = BarcodePao::CODE128_AUTO

bc.draw("Hello123", 400, 100)

NW-7 —

bc = BarcodePao::NW7.new(BarcodePao::FORMAT_PNG)

bc.show_text = true

bc.draw("A1234567A", 400, 100)

ITF —

bc = BarcodePao::ITF.new(BarcodePao::FORMAT_PNG)

bc.show_text = true

bc.draw("123456", 400, 100)

2次元バーコード

QR

qr = BarcodePao::QRCode.new(BarcodePao::FORMAT_PNG)

qr.error_correction_level = BarcodePao::QR_ECC_M

qr.draw("https://www.pao.ac/", 300)

DataMatrix

dm = BarcodePao::DataMatrix.new(BarcodePao::FORMAT_PNG)

dm.code_size = BarcodePao::DX_SZ_AUTO

dm.draw("Hello World", 200)

PDF417

pdf = BarcodePao::PDF417.new(BarcodePao::FORMAT_PNG)

pdf.set_error_level(BarcodePao::PDF417_ERROR_LEVEL2)

pdf.set_columns(3)

pdf.draw("Hello World", 400, 100)

- 11 -

Barcode.Ruby マニュアル

GS1系バーコード

GS1-128

gs1 = BarcodePao::GS1128.new(BarcodePao::FORMAT_PNG)

gs1.show_text = true

gs1.draw("[01]04912345123459[10]ABC123", 500, 120)

GS1 DataBar

db = BarcodePao::GS1DataBar14.new(BarcodePao::FORMAT_PNG, BarcodePao::OMNIDIRECTIONAL)

db.draw("1234567890128", 200, 80)

商品・郵便バーコード

JAN-13

jan13 = BarcodePao::JAN13.new(BarcodePao::FORMAT_PNG)

jan13.show_text = true

jan13.extended_guard = true

jan13.text_even_spacing = false

jan13.draw("491234567890", 300, 100)

yubin = BarcodePao::YubinCustomer.new(BarcodePao::FORMAT_PNG)

yubin.draw("27500263-29-2-401", 25)

- 12 -

Barcode.Ruby マニュアル

APIリファレンス

共通メソッド（全バーコード）

メソッド 説明 デフォルト

set_output_format(fmt) 出力形式（"png", "jpeg", "svg"） "png"

set_foreground_color(r, g, b, a) 前景色（RGBA） 黒（0,0,0,255）

set_background_color(r, g, b, a) 背景色（RGBA） 白（255,255,255,255）

get_image_base64 Base64 データURI取得 —

get_svg SVG文字列取得（SVGモード時） —

get_image_memory バイト列取得 —

プロパティ 説明 デフォルト

foreground_color 前景色 [R,G,B,A] [0,0,0,255]

background_color 背景色 [R,G,B,A] [255,255,255,255]

fit_width 幅ぴったり描画 false

px_adjust_black 黒バー幅調整 0

px_adjust_white 白スペース幅調整 0

1次元バーコード共通

プロパティ 説明 デフォルト

show_text テキスト表示 true

text_even_spacing テキスト均等割付 true

text_font_scale フォントサイズ倍率 1.0

text_vertical_offset_scale 垂直オフセット倍率 1.0

min_line_width 最小線幅 1

draw メソッド: draw(code, width, height) — 1D バーコード生成

各バーコード固有設定

Code39 / NW-7

- 13 -

Barcode.Ruby マニュアル

プロパティ 説明 デフォルト

show_start_stop スタート/ストップコード表示 true

Code128

プロパティ 説明 デフォルト

code_mode CODE128_AUTO / CODE128_CODE_A / CODE128_CODE_B / CODE128_CODE_CCODE128_AUTO

JAN-8 / JAN-13 / UPC-A / UPC-E

プロパティ 説明 デフォルト

extended_guard ガードバー拡張 true

GS1 DataBar 14

コンストラクタ: GS1DataBar14.new(format, symbol_type)

シンボルタイプ 定数

標準型 OMNIDIRECTIONAL

二層型 STACKED

標準二層型 STACKED_OMNIDIRECTIONAL

GS1 DataBar 拡張型

プロパティ 説明 デフォルト

columns 列数 0（自動）

郵便カスタマバーコード

draw メソッド: draw(code, height) — 幅は自動計算

QRコード

draw メソッド: draw(code, size) — 正方形

プロパティ 説明 デフォルト

string_encoding "utf-8" / "shift-jis" "utf-8"

error_correction_level QR_ECC_L/M/Q/H QR_ECC_M

version 0（自動）〜 40 0

encode_mode QR_MODE_BINARY/NUMERIC/ALPHANUMERIC/KANJIQR_MODE_BINARY

DataMatrix

draw メソッド: draw(code, size) — 正方形

- 14 -

Barcode.Ruby マニュアル

プロパティ 説明 デフォルト

string_encoding "utf-8" / "shift-jis" "utf-8"

code_size DX_SZ_AUTO 〜 各種サイズ定数 DX_SZ_AUTO

encode_scheme DX_SCHEME_AUTO_BEST 等 DX_SCHEME_AUTO_BEST

PDF417

draw メソッド: draw(code, width, height)

メソッド 説明 デフォルト

set_error_level(level) 誤り訂正レベル（0〜8） PDF417_ERROR_LEVEL2

set_columns(cols) 列数 0（自動）

set_rows(rows) 行数 0（自動）

set_aspect_ratio(ratio) 縦横比 0.5

set_y_height(h) Y高さ係数 3

- 15 -

Barcode.Ruby マニュアル

動作環境

項目 要件

Ruby 3.0 以降

依存gem chunky_png（PNG生成）、ttfunk（フォント描画）

Ruby がサポートするすべてのOS（Windows / macOS / Linux）で動作します。C拡張は不要です。

- 16 -

Barcode.Ruby マニュアル

ライセンス・お問い合わせ

使用許諾

Barcode.Ruby
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書 — この使用許諾書は、利用者様がお使いのパソコンにおいて Barcode.Ruby
を使用する場合に同意しなければならない契約書です。

2. 同意 — 利用者様が Barcode.Ruby を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入 — 製品版を使用して開発を行う場合、1 台の開発用コンピュータにつき 1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権 — Barcode.Ruby の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責 — Barcode.Ruby
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項 — Barcode.Ruby
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。

7. 保証の範囲 — 弊社は Barcode.Ruby の仕様を予告なしに変更することがあります。

8. 適用期間 — 本使用許諾条件は利用者様が Barcode.Ruby を使用した日より有効です。

ライセンス

試用版: 生成されるバーコードに「SAMPLE」の透かしが表示されます。機能制限はありません。

製品版: 透かしなしでバーコードを生成できます。

お問い合わせ

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.ruby/

メール info@pao.ac

関連製品

- 17 -

Barcode.Ruby マニュアル

製品 対応環境

Barcode.net .NET（C#, VB.NET）

Barcode.jar Java

Barcode.php PHP

Barcode.wasm JavaScript / TypeScript

Barcode.py Python

Barcode.Flutter Flutter / Dart

Barcode.Go Go

Barcode.Rust Rust

Barcode.Swift Swift

Barcode.Ruby ユーザーズマニュアル バージョン 1.0 — 2026年2月

© 2026 有限会社 パオ・アット・オフィス

- 18 -

