
Barcode.Go (WASM)
C++ WASMエンジン Go ラッパー

マニュアル

バージョン 1.0

有限会社 パオ・アット・オフィス

https://www.pao.ac/



Barcode.Go (WASM) マニュアル

目次

1. C++ バーコードエンジンを Go から手軽に利用。

2. 1.1 C++ WASM版とは

3. 1.2 特長

4. 1.3 対応バーコード一覧

5. 2.1 動作要件

6. 2.2 ダウンロード

7. 2.3 ファイル構成

8. 3.1 QRコードをPNGで生成

9. 3.2 SVGベクター出力

10. 3.3 REST APIサーバー

11. 4.1 共通メソッド

12. 4.2 1次元バーコード共通メソッド

13. 4.3 各バーコード型

14. 使用許諾

15. お問い合わせ

- 2 -



Barcode.Go (WASM) マニュアル

C++ バーコードエンジンを Go から手軽に利用。

ユーザーズマニュアル

バージョン 1.0 — 2026年2月

有限会社 パオ・アット・オフィス

https://www.pao.ac/

1. はじめに

・1.1 C++ WASM版とは
・1.2 特長
・1.3 対応バーコード一覧

2. 導入方法

・2.1 動作要件
・2.2 ダウンロード
・2.3 ファイル構成

3. クイックスタート

・3.1 QRコードをPNGで生成
・3.2 SVGベクター出力
・3.3 REST APIサーバー

4. APIリファレンス

・4.1 共通メソッド
・4.2 1次元バーコード共通メソッド
・4.3 各バーコード型

5. Pure Go版との違い

6. 動作環境

7. ライセンス・お問い合わせ

- 3 -



Barcode.Go (WASM) マニュアル

1.1 C++ WASM版とは

Barcode.Go  (C++  WASMエンジン)  は、C++  で書かれた高速バーコードエンジンを  Node.js  経由  で  Go
から利用するラッパーライブラリです。

C++  バーコードエンジンは  Emscripten  で  WebAssembly  にコンパイルされており、Node.js
をサブプロセスとして起動して WASM を実行します。Go 側は JSON で命令を送り、生成されたバーコード（Base64
PNG や SVG 文字列）を受け取ります。

Go  → JSON → node _barcode_runner.mjs → barcode.mjs → WASM → JSON → Go

Pure Go版と同じ18種のバーコードを生成でき、Go 標準ライブラリのみで動作します（外部クレート不要）。

import wasm "barcode_pao_wasm"

qr := wasm.NewQRCode(wasm.FormatPNG)

result, _ := qr.Draw("https://www.pao.ac/", 300)

// result  "data:image/png;base64,..." 

- 4 -



Barcode.Go (WASM) マニュアル

1.2 特長

特長 説明

C++ 高速エンジン 実績あるC++バーコードエンジンをそのまま利用。高品質な出力

Go 標準ライブラリのみ 外部依存ゼロ。os/exec と encoding/json のみ使用

Node.js ブリッジ Emscripten WASM を Node.js 経由で実行。インストールは node のみ

シンプルAPI Draw() が直接 Base64/SVG 文字列を返す。2ステップで完結

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG。用途で使い分け可能

- 5 -



Barcode.Go (WASM) マニュアル

1.3 対応バーコード一覧

1次元バーコード（15種類）

バーコード コンストラクタ

Code39 NewCode39()

Code93 NewCode93()

Code128 NewCode128()

GS1-128 NewGS1128()

NW-7 (Codabar) NewNW7()

ITF NewITF()

Matrix 2of5 NewMatrix2of5()

NEC 2of5 NewNEC2of5()

JAN-8 (EAN-8) NewJAN8()

JAN-13 (EAN-13) NewJAN13()

UPC-A NewUPCA()

UPC-E NewUPCE()

GS1 DataBar 標準型 NewGS1DataBar14()

GS1 DataBar 限定型 NewGS1DataBarLimited()

GS1 DataBar 拡張型 NewGS1DataBarExpanded()

特殊バーコード（1種類）

バーコード コンストラクタ

郵便カスタマバーコード NewYubinCustomer()

2次元バーコード（3種類）

バーコード コンストラクタ

QRコード NewQRCode()

DataMatrix NewDataMatrix()

PDF417 NewPDF417()

- 6 -



Barcode.Go (WASM) マニュアル

2.1 動作要件

項目 要件

Go 1.21 以降

Node.js 16 以降

OS Windows / macOS / Linux

Node.js は WASM エンジンの実行に必要です。node コマンドが PATH に含まれている必要があります。

- 7 -



Barcode.Go (WASM) マニュアル

2.2 ダウンロード

https://www.pao.ac/barcode.go/#download

C++ WASM版のダウンロードパッケージには、Easy 2 Steps と All-in-One の2つのサンプルが含まれています。

- 8 -



Barcode.Go (WASM) マニュアル

2.3 ファイル構成

barcode_go_wasm_cpp/

├── easy2steps/

│   ├── main.go               # QR

│   ├── go.mod

│   └── templates/

│       └── index.html         # Web

├── allinone/

│   ├── main.go               # 18

│   ├── go.mod

│   └── templates/

│       └── index.html

└── barcode_pao_wasm/          # WASM

    ├── go.mod

    ├── wrapper.go             # Go → WASM 

    └── wasm/

        ├── barcode.wasm       # C++ WASM

        ├── barcode.js         # EmscriptenJS

        ├── barcode.mjs        # ES

        └── _barcode_runner.mjs # Node.js

起動方法

cd barcode_go_wasm_cpp/easy2steps

go run main.go

# → http://localhost:5702

- 9 -



Barcode.Go (WASM) マニュアル

3.1 QRコードをPNGで生成

package main

import (

    "fmt"

    wasm "barcode_pao_wasm"

)

func main() {

    // Step 1: QR

    qr := wasm.NewQRCode(wasm.FormatPNG)

    // Step 2:  → Base64

    result, err := qr.Draw("https://www.pao.ac/", 300)

    if err != nil {

        fmt.Println("Error:", err)

        return

    }

    // result  "data:image/png;base64,..." 

    fmt.Println("Base64:", result[:50], "...")

}

ポイント:  Pure  Go版と異なり、Draw()  が直接  Base64  文字列を返します。GetImageBase64()
を呼ぶ必要はありません。

- 10 -



Barcode.Go (WASM) マニュアル

3.2 SVGベクター出力

import wasm "barcode_pao_wasm"

code := wasm.NewCode128(wasm.FormatSVG)

code.SetShowText(true)

code.SetTextEvenSpacing(true)

svg, err := code.Draw("Hello-2026", 400, 100)

// svg  "<svg xmlns="...">...</svg>" 

- 11 -



Barcode.Go (WASM) マニュアル

3.3 REST APIサーバー

package main

import (

    "encoding/json"

    "log"

    "net/http"

    wasm "barcode_pao_wasm"

)

func main() {

    http.HandleFunc("/api/qr", func(w http.ResponseWriter, r *http.Request) {

        code := r.URL.Query().Get("code")

        if code == "" {

            code = "https://www.pao.ac/"

        }

        qr := wasm.NewQRCode(wasm.FormatPNG)

        b64, _ := qr.Draw(code, 300)

        w.Header().Set("Content-Type", "application/json")

        json.NewEncoder(w).Encode(map[string]string{

            "base64": b64,

        })

    })

    log.Println("→ http://localhost:5702/api/qr?code=Hello")

    log.Fatal(http.ListenAndServe(":5702", nil))

}

- 12 -



Barcode.Go (WASM) マニュアル

4.1 共通メソッド

すべてのバーコード型で使用できるメソッドです。

SetOutputFormat(format string)

出力形式を設定します（コンストラクタで指定済みの場合は不要）。

定数 説明

FormatPNG PNG画像（Base64）

FormatJPEG JPEG画像（Base64）

FormatSVG SVGベクター

SetForegroundColor(r, g, b, a int)

前景色（バーの色）を RGBA で設定します。各値は 0〜255。

code.SetForegroundColor(0, 0, 128, 255)  // 

SetBackgroundColor(r, g, b, a int)

背景色を RGBA で設定します。

code.SetBackgroundColor(255, 255, 240, 255)  // 

code.SetBackgroundColor(0, 0, 0, 0)          // 

- 13 -



Barcode.Go (WASM) マニュアル

4.2 1次元バーコード共通メソッド

1次元バーコード（郵便カスタマバーコードを除く）で使用できるメソッドです。

Draw(code string, width, height int) (string, error)

バーコードを生成し、Base64 または SVG 文字列を返します。

result, err := code.Draw("HELLO123", 400, 100)

SetShowText(show bool)

バーコード下部のテキスト表示を設定します。

SetTextEvenSpacing(even bool)

テキストの均等割付を設定します。

SetTextFontScale(scale float64)

テキストのフォントサイズ倍率を設定します。

SetFitWidth(fit bool)

指定幅にぴったり収めるかどうかを設定します。

SetPxAdjustBlack(adj int) / SetPxAdjustWhite(adj int)

黒バー / 白スペースの幅を微調整します。

- 14 -



Barcode.Go (WASM) マニュアル

4.3 各バーコード型

Code39

code := wasm.NewCode39(wasm.FormatPNG)

code.SetShowText(true)

code.SetShowStartStop(true)

result, _ := code.Draw("HELLO123", 400, 100)

固有メソッド: SetShowStartStop(show bool)

Code128

code := wasm.NewCode128(wasm.FormatPNG)

code.SetShowText(true)

code.SetCodeMode("AUTO")  // AUTO / A / B / C

result, _ := code.Draw("Hello123", 400, 100)

固有メソッド: SetCodeMode(mode string)

GS1-128

gs1 := wasm.NewGS1128(wasm.FormatPNG)

gs1.SetShowText(true)

result, _ := gs1.Draw("[01]04912345123459[10]ABC123", 500, 120)

NW-7 (Codabar)

code := wasm.NewNW7(wasm.FormatPNG)

code.SetShowStartStop(true)

result, _ := code.Draw("A1234567A", 400, 100)

固有メソッド: SetShowStartStop(show bool)

JAN-13 / JAN-8

- 15 -



Barcode.Go (WASM) マニュアル

jan := wasm.NewJAN13(wasm.FormatPNG)

jan.SetShowText(true)

jan.SetExtendedGuard(true)

jan.SetTextEvenSpacing(false)

result, _ := jan.Draw("491234567890", 300, 100)

固有メソッド: SetExtendedGuard(ext bool)

UPC-A / UPC-E

upc := wasm.NewUPCA(wasm.FormatPNG)

upc.SetExtendedGuard(true)

result, _ := upc.Draw("01234567890", 300, 100)

GS1 DataBar 標準型

db := wasm.NewGS1DataBar14(wasm.FormatPNG)

db.SetSymbolType("OMNIDIRECTIONAL")

result, _ := db.Draw("1234567890128", 200, 80)

固有メソッド:  SetSymbolType(symbolType  string)  —  "OMNIDIRECTIONAL",  "STACKED",
"STACKED_OMNIDIRECTIONAL"

GS1 DataBar 拡張型

db := wasm.NewGS1DataBarExpanded(wasm.FormatPNG)

db.SetSymbolType("UNSTACKED")

result, _ := db.Draw("[01]90012345678908[10]ABC123", 400, 80)

固有メソッド: SetSymbolType(symbolType string), SetNoOfColumns(cols int)

郵便カスタマバーコード

yubin := wasm.NewYubinCustomer(wasm.FormatPNG)

result, _ := yubin.Draw("27500263-29-2-401", 25)

高さのみ指定（幅は自動計算）。

QRコード

- 16 -



Barcode.Go (WASM) マニュアル

qr := wasm.NewQRCode(wasm.FormatPNG)

qr.SetErrorCorrectionLevel("M")  // L / M / Q / H

qr.SetVersion(0)                 // 0=

result, _ := qr.Draw("https://www.pao.ac/", 300)

固有メソッド: SetErrorCorrectionLevel(level string), SetVersion(v int), SetEncodeMode(mode string)

DataMatrix

dm := wasm.NewDataMatrix(wasm.FormatPNG)

dm.SetStringEncoding("utf-8")

result, _ := dm.Draw("Hello World", 200)

固有メソッド: SetCodeSize(size string), SetEncodeScheme(scheme string)

PDF417

pdf := wasm.NewPDF417(wasm.FormatPNG)

pdf.SetErrorLevel(2)

pdf.SetColumns(4)

result, _ := pdf.Draw("Hello World", 400, 100)

固有メソッド:  SetErrorLevel(level  int),  SetColumns(cols  int),  SetRows(rows  int),  SetAspectRatio(ratio  float64),
SetYHeight(h int)

PDF417 の Draw() は幅と高さの両方を指定します。

項目 Pure Go版 C++ WASM版

エンジン Pure Go 実装 C++ (Emscripten WASM)

依存 golang.org/x/image Node.js

API方式 フィールド直接設定 + Draw + GetImageBase64 セッターメソッド + Draw（結果を直接返す）

出力取得 GetImageBase64(), GetSVG(), GetImageMemory()Draw() が直接返す

提供形態 Pure Go ライブラリ WASM バイナリ

価格 22,000円 11,000円

API の主な違い

Pure Go版:

- 17 -



Barcode.Go (WASM) マニュアル

qr := barcode.NewQRCode(barcode.FormatPNG)

qr.Draw("Hello", 300)

b64, _ := qr.GetImageBase64()

C++ WASM版:

qr := wasm.NewQRCode(wasm.FormatPNG)

b64, _ := qr.Draw("Hello", 300)

設定方法の違い:

Pure Go版はフィールドに直接代入:

code.ShowText = true

code.TextEvenSpacing = true

C++ WASM版はセッターメソッドを使用:

code.SetShowText(true)

code.SetTextEvenSpacing(true)

項目 要件

Go 1.21 以降

Node.js 16 以降

OS Windows / macOS / Linux

外部ライブラリの go get は不要です。Go 標準ライブラリ（os/exec, encoding/json）のみ使用しています。

- 18 -



Barcode.Go (WASM) マニュアル

使用許諾

Barcode.Go
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書

この使用許諾書は、利用者様がお使いのパソコンにおいて  Barcode.Go
を使用する場合に同意しなければならない契約書です。

2. 同意

利用者様が Barcode.Go を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入

製品版を使用して開発を行う場合、1  台の開発用コンピュータにつき  1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権

Barcode.Go の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責

Barcode.Go
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項

Barcode.Go
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。

- 19 -



Barcode.Go (WASM) マニュアル

お問い合わせ

有限会社 パオ・アット・オフィス

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.go/

メール info@pao.ac

Barcode.Go (C++ WASMエンジン) ユーザーズマニュアル

バージョン 1.0 — 2026年2月

© 2026 有限会社 パオ・アット・オフィス

- 20 -


