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1.1 C++ WASM版とは

Barcode.Go  (C++  WASMエンジン)  は、C++  で書かれた高速バーコードエンジンを  Node.js  経由  で  Go
から利用するラッパーライブラリです。

C++  バーコードエンジンは  Emscripten  で  WebAssembly  にコンパイルされており、Node.js
をサブプロセスとして起動して WASM を実行します。Go 側は JSON で命令を送り、生成されたバーコード（Base64
PNG や SVG 文字列）を受け取ります。

Go  → JSON → node _barcode_runner.mjs → barcode.mjs → WASM → JSON → Go

Pure Go版と同じ18種のバーコードを生成でき、Go 標準ライブラリのみで動作します（外部クレート不要）。

import wasm "barcode_pao_wasm"

qr := wasm.NewQRCode(wasm.FormatPNG)

result, _ := qr.Draw("https://www.pao.ac/", 300)

// result  "data:image/png;base64,..." 
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1.2 特長

特長 説明

C++ 高速エンジン 実績あるC++バーコードエンジンをそのまま利用。高品質な出力

Go 標準ライブラリのみ 外部依存ゼロ。os/exec と encoding/json のみ使用

Node.js ブリッジ Emscripten WASM を Node.js 経由で実行。インストールは node のみ

シンプルAPI Draw() が直接 Base64/SVG 文字列を返す。2ステップで完結

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG。用途で使い分け可能
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1.3 対応バーコード一覧

1次元バーコード（15種類）

バーコード コンストラクタ

Code39 NewCode39()

Code93 NewCode93()

Code128 NewCode128()

GS1-128 NewGS1128()

NW-7 (Codabar) NewNW7()

ITF NewITF()

Matrix 2of5 NewMatrix2of5()

NEC 2of5 NewNEC2of5()

JAN-8 (EAN-8) NewJAN8()

JAN-13 (EAN-13) NewJAN13()

UPC-A NewUPCA()

UPC-E NewUPCE()

GS1 DataBar 標準型 NewGS1DataBar14()

GS1 DataBar 限定型 NewGS1DataBarLimited()

GS1 DataBar 拡張型 NewGS1DataBarExpanded()

特殊バーコード（1種類）

バーコード コンストラクタ

郵便カスタマバーコード NewYubinCustomer()

2次元バーコード（3種類）

バーコード コンストラクタ

QRコード NewQRCode()

DataMatrix NewDataMatrix()

PDF417 NewPDF417()

- 6 -



Barcode.Go (WASM) マニュアル

2.1 動作要件

項目 要件

Go 1.21 以降

Node.js 16 以降

OS Windows / macOS / Linux

Node.js は WASM エンジンの実行に必要です。node コマンドが PATH に含まれている必要があります。
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2.2 ダウンロード

https://www.pao.ac/barcode.go/#download

C++ WASM版のダウンロードパッケージには、Easy 2 Steps と All-in-One の2つのサンプルが含まれています。

- 8 -



Barcode.Go (WASM) マニュアル

2.3 ファイル構成

barcode_go_wasm_cpp/

├── easy2steps/

│   ├── main.go               # QR

│   ├── go.mod

│   └── templates/

│       └── index.html         # Web

├── allinone/

│   ├── main.go               # 18

│   ├── go.mod

│   └── templates/

│       └── index.html

└── barcode_pao_wasm/          # WASM

    ├── go.mod

    ├── wrapper.go             # Go → WASM 

    └── wasm/

        ├── barcode.wasm       # C++ WASM

        ├── barcode.js         # EmscriptenJS

        ├── barcode.mjs        # ES

        └── _barcode_runner.mjs # Node.js

起動方法

cd barcode_go_wasm_cpp/easy2steps

go run main.go

# → http://localhost:5702
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3.1 QRコードをPNGで生成

package main

import (

    "fmt"

    wasm "barcode_pao_wasm"

)

func main() {

    // Step 1: QR

    qr := wasm.NewQRCode(wasm.FormatPNG)

    // Step 2:  → Base64

    result, err := qr.Draw("https://www.pao.ac/", 300)

    if err != nil {

        fmt.Println("Error:", err)

        return

    }

    // result  "data:image/png;base64,..." 

    fmt.Println("Base64:", result[:50], "...")

}

ポイント:  Pure  Go版と異なり、Draw()  が直接  Base64  文字列を返します。GetImageBase64()
を呼ぶ必要はありません。
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3.2 SVGベクター出力

import wasm "barcode_pao_wasm"

code := wasm.NewCode128(wasm.FormatSVG)

code.SetShowText(true)

code.SetTextEvenSpacing(true)

svg, err := code.Draw("Hello-2026", 400, 100)

// svg  "<svg xmlns="...">...</svg>" 
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3.3 REST APIサーバー

package main

import (

    "encoding/json"

    "log"

    "net/http"

    wasm "barcode_pao_wasm"

)

func main() {

    http.HandleFunc("/api/qr", func(w http.ResponseWriter, r *http.Request) {

        code := r.URL.Query().Get("code")

        if code == "" {

            code = "https://www.pao.ac/"

        }

        qr := wasm.NewQRCode(wasm.FormatPNG)

        b64, _ := qr.Draw(code, 300)

        w.Header().Set("Content-Type", "application/json")

        json.NewEncoder(w).Encode(map[string]string{

            "base64": b64,

        })

    })

    log.Println("→ http://localhost:5702/api/qr?code=Hello")

    log.Fatal(http.ListenAndServe(":5702", nil))

}
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4.1 共通メソッド

すべてのバーコード型で使用できるメソッドです。

SetOutputFormat(format string)

出力形式を設定します（コンストラクタで指定済みの場合は不要）。

定数 説明

FormatPNG PNG画像（Base64）

FormatJPEG JPEG画像（Base64）

FormatSVG SVGベクター

SetForegroundColor(r, g, b, a int)

前景色（バーの色）を RGBA で設定します。各値は 0〜255。

code.SetForegroundColor(0, 0, 128, 255)  // 

SetBackgroundColor(r, g, b, a int)

背景色を RGBA で設定します。

code.SetBackgroundColor(255, 255, 240, 255)  // 

code.SetBackgroundColor(0, 0, 0, 0)          // 
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4.2 1次元バーコード共通メソッド

1次元バーコード（郵便カスタマバーコードを除く）で使用できるメソッドです。

Draw(code string, width, height int) (string, error)

バーコードを生成し、Base64 または SVG 文字列を返します。

result, err := code.Draw("HELLO123", 400, 100)

SetShowText(show bool)

バーコード下部のテキスト表示を設定します。

SetTextEvenSpacing(even bool)

テキストの均等割付を設定します。

SetTextFontScale(scale float64)

テキストのフォントサイズ倍率を設定します。

SetFitWidth(fit bool)

指定幅にぴったり収めるかどうかを設定します。

SetPxAdjustBlack(adj int) / SetPxAdjustWhite(adj int)

黒バー / 白スペースの幅を微調整します。
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4.3 各バーコード型

Code39

code := wasm.NewCode39(wasm.FormatPNG)

code.SetShowText(true)

code.SetShowStartStop(true)

result, _ := code.Draw("HELLO123", 400, 100)

固有メソッド: SetShowStartStop(show bool)

Code128

code := wasm.NewCode128(wasm.FormatPNG)

code.SetShowText(true)

code.SetCodeMode("AUTO")  // AUTO / A / B / C

result, _ := code.Draw("Hello123", 400, 100)

固有メソッド: SetCodeMode(mode string)

GS1-128

gs1 := wasm.NewGS1128(wasm.FormatPNG)

gs1.SetShowText(true)

result, _ := gs1.Draw("[01]04912345123459[10]ABC123", 500, 120)

NW-7 (Codabar)

code := wasm.NewNW7(wasm.FormatPNG)

code.SetShowStartStop(true)

result, _ := code.Draw("A1234567A", 400, 100)

固有メソッド: SetShowStartStop(show bool)

JAN-13 / JAN-8
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jan := wasm.NewJAN13(wasm.FormatPNG)

jan.SetShowText(true)

jan.SetExtendedGuard(true)

jan.SetTextEvenSpacing(false)

result, _ := jan.Draw("491234567890", 300, 100)

固有メソッド: SetExtendedGuard(ext bool)

UPC-A / UPC-E

upc := wasm.NewUPCA(wasm.FormatPNG)

upc.SetExtendedGuard(true)

result, _ := upc.Draw("01234567890", 300, 100)

GS1 DataBar 標準型

db := wasm.NewGS1DataBar14(wasm.FormatPNG)

db.SetSymbolType("OMNIDIRECTIONAL")

result, _ := db.Draw("1234567890128", 200, 80)

固有メソッド:  SetSymbolType(symbolType  string)  —  "OMNIDIRECTIONAL",  "STACKED",
"STACKED_OMNIDIRECTIONAL"

GS1 DataBar 拡張型

db := wasm.NewGS1DataBarExpanded(wasm.FormatPNG)

db.SetSymbolType("UNSTACKED")

result, _ := db.Draw("[01]90012345678908[10]ABC123", 400, 80)

固有メソッド: SetSymbolType(symbolType string), SetNoOfColumns(cols int)

郵便カスタマバーコード

yubin := wasm.NewYubinCustomer(wasm.FormatPNG)

result, _ := yubin.Draw("27500263-29-2-401", 25)

高さのみ指定（幅は自動計算）。

QRコード
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qr := wasm.NewQRCode(wasm.FormatPNG)

qr.SetErrorCorrectionLevel("M")  // L / M / Q / H

qr.SetVersion(0)                 // 0=

result, _ := qr.Draw("https://www.pao.ac/", 300)

固有メソッド: SetErrorCorrectionLevel(level string), SetVersion(v int), SetEncodeMode(mode string)

DataMatrix

dm := wasm.NewDataMatrix(wasm.FormatPNG)

dm.SetStringEncoding("utf-8")

result, _ := dm.Draw("Hello World", 200)

固有メソッド: SetCodeSize(size string), SetEncodeScheme(scheme string)

PDF417

pdf := wasm.NewPDF417(wasm.FormatPNG)

pdf.SetErrorLevel(2)

pdf.SetColumns(4)

result, _ := pdf.Draw("Hello World", 400, 100)

固有メソッド:  SetErrorLevel(level  int),  SetColumns(cols  int),  SetRows(rows  int),  SetAspectRatio(ratio  float64),
SetYHeight(h int)

PDF417 の Draw() は幅と高さの両方を指定します。

項目 Pure Go版 C++ WASM版

エンジン Pure Go 実装 C++ (Emscripten WASM)

依存 golang.org/x/image Node.js

API方式 フィールド直接設定 + Draw + GetImageBase64 セッターメソッド + Draw（結果を直接返す）

出力取得 GetImageBase64(), GetSVG(), GetImageMemory()Draw() が直接返す

提供形態 Pure Go ライブラリ WASM バイナリ

価格 22,000円 11,000円

API の主な違い

Pure Go版:
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qr := barcode.NewQRCode(barcode.FormatPNG)

qr.Draw("Hello", 300)

b64, _ := qr.GetImageBase64()

C++ WASM版:

qr := wasm.NewQRCode(wasm.FormatPNG)

b64, _ := qr.Draw("Hello", 300)

設定方法の違い:

Pure Go版はフィールドに直接代入:

code.ShowText = true

code.TextEvenSpacing = true

C++ WASM版はセッターメソッドを使用:

code.SetShowText(true)

code.SetTextEvenSpacing(true)

項目 要件

Go 1.21 以降

Node.js 16 以降

OS Windows / macOS / Linux

外部ライブラリの go get は不要です。Go 標準ライブラリ（os/exec, encoding/json）のみ使用しています。

- 18 -



Barcode.Go (WASM) マニュアル

使用許諾

Barcode.Go
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書

この使用許諾書は、利用者様がお使いのパソコンにおいて  Barcode.Go
を使用する場合に同意しなければならない契約書です。

2. 同意

利用者様が Barcode.Go を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入

製品版を使用して開発を行う場合、1  台の開発用コンピュータにつき  1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権

Barcode.Go の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責

Barcode.Go
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項

Barcode.Go
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。
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お問い合わせ

有限会社 パオ・アット・オフィス

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.go/

メール info@pao.ac
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