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1.1 Barcode.Goとは

物流倉庫のピッキングリスト、医療現場の検体ラベル、ECサイトの出荷伝票——。

バーコードはあらゆる業務システムの「最後の1ミリ」を担っています。

Barcode.Go は、そのバーコードを Pure Go で生成するライブラリです。

C言語バインディングも、外部コマンドも、一切不要。go  get  一発でインストールでき、1次元・2次元あわせて
全18種 のバーコードを、PNG画像・JPEG画像・SVGベクター で出力できます。

Go  のシンプルさと高い並行性をそのまま活かせるため、REST
APIサーバーに組み込めば、毎秒数千枚のバーコードを生成することも可能です。

qr := barcode.NewQRCode(barcode.FormatPNG)

qr.Draw("https://www.pao.ac/", 300)

base64, _ := qr.GetImageBase64()

たった3行で、QRコードが Base64 文字列になって返ってきます。
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1.2 特長

特長 説明

Pure Go 外部依存ゼロ（golang.org/x/image のみ）。CGO不要、クロスコンパイルも自由自在

サーバーサイド特化 net/http と組み合わせるだけで REST API バーコードサーバーが完成

PNG / JPEG / SVG 画面表示にはPNG、印刷にはSVG、サムネイルにはJPEG。用途で使い分け可能

18種のバーコード 1D・2D・GS1・郵便まで、業務で必要なバーコードを網羅

高い並行性 goroutine セーフ。各インスタンスが独立しているため、並行生成もロックフリー

豊富なカスタマイズ 色、テキスト、バー幅調整、均等割付まで細かく制御可能
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1.3 対応バーコード一覧

1次元バーコード（11種類）

バーコード コンストラクタ どんなところで使われている？

Code39 NewCode39() 工場の部品ラベル、軍事規格（MIL-STD）にも採用

Code93 NewCode93() Code39の高密度版。郵便・物流で活用

Code128 NewCode128() 物流の標準。ASCII全文字をエンコード可能

GS1-128 NewGS1_128() 医薬品・物流。ロット番号や有効期限をAIで管理

NW-7 (Codabar) NewNW7() 宅配便の送り状、図書館の貸出管理でおなじみ

ITF NewITF() 段ボール箱の集合包装用。数字ペアで高密度

Matrix 2of5 NewMatrix2of5() 工業用途。数字のみのシンプルな構成

NEC 2of5 NewNEC2of5() 日本の工業現場で使われるバリエーション

JAN-8 (EAN-8) NewJAN8() 小さな商品用。ガムやキャンディーのパッケージに

JAN-13 (EAN-13) NewJAN13() 日本の商品バーコードの標準。スーパーのレジで毎日活躍

UPC-A NewUPC_A() 北米の商品コード。12桁

UPC-E NewUPC_E() UPC-Aの短縮版。小さなパッケージに

GS1 DataBar（3種類）

バーコード コンストラクタ どんなところで使われている？

GS1 DataBar 標準型 NewGS1DataBar14() スーパーの青果・精肉売り場。重量や価格を直接エンコード

GS1 DataBar 限定型 NewGS1DataBarLimited() 小型商品向けのコンパクト版

GS1 DataBar 拡張型 NewGS1DataBarExpanded() 可変長データ対応。クーポンや特売情報も格納

郵便バーコード（1種類）

バーコード コンストラクタ どんなところで使われている？

郵便カスタマバーコード NewYubinCustomer() 郵便物の住所バーコード。自動区分機で高速仕分け

2次元バーコード（3種類）

- 8 -



Barcode.Go マニュアル

バーコード コンストラクタ どんなところで使われている？

QRコード NewQRCode() URL、決済、名刺交換——。日本発、世界で最も普及した2Dコード

DataMatrix NewDataMatrix() 電子部品の超小型マーキング。GS1ヘルスケアでも標準

PDF417 NewPDF417() 運転免許証、搭乗券。大容量データを1本に集約
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2.1 PNG画像出力 — Base64でそのまま返せる

Draw()  でバーコードを生成し、GetImageBase64()  を呼ぶだけで  Base64エンコードされたPNG画像
が返ってきます。HTMLの  <img>  タグにそのまま埋め込めるので、REST
APIの戻り値としてそのままクライアントに返せます。

qr := barcode.NewQRCode(barcode.FormatPNG)

qr.Draw("Hello World", 300)

base64, _ := qr.GetImageBase64()

// base64  "data:image/png;base64,iVBORw0KGgo..." 

//  JSON 

PNGが向いている場面:

・REST APIでBase64文字列をクライアントに返す
・画面上でのプレビュー表示
・固定解像度での画像出力
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2.2 SVGベクター出力 — 拡大しても美しい

出力形式を FormatSVG にするだけで、ベクター形式のSVG文字列が得られます。

どれだけ拡大しても線がぼやけないため、印刷用途に最適 です。

code := barcode.NewCode128(barcode.FormatSVG)

code.Draw("Hello-2026", 400, 100)

svg, _ := code.GetSVG()

// svg  "<svg xmlns="...">...</svg>" 

// HTML

SVGが向いている場面:

・ラベル印刷（拡大しても劣化しない）
・PDF生成時の高品質バーコード埋め込み
・ファイルサイズを小さく抑えたい場合

>  ヒント:  同じバーコードオブジェクトで  SetOutputFormat()
を切り替えれば、PNG版とSVG版の両方を生成できます。プレビューはPNG、ダウンロードはSVG、という使い分けも
簡単です。
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2.3 バイト列出力 — ファイル保存やHTTPレスポンスに

GetImageMemory()  を使えば、PNG/JPEG
のバイト列（[]byte）を直接取得できます。ファイル保存はもちろん、http.ResponseWriter
に直接書き込んでバイナリレスポンスとして返すことも可能です。

code := barcode.NewCode39(barcode.FormatPNG)

code.Draw("HELLO", 400, 100)

imageBytes := code.GetImageMemory()

// 

os.WriteFile("barcode.png", imageBytes, 0644)

//  HTTP 

w.Header().Set("Content-Type", "image/png")

w.Write(imageBytes)
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2.4 カスタマイズ — 色もテキストも思いのままに

色を変える

前景色（バーの色）と背景色を自由に指定できます。

透明度（アルファ値）にも対応しているので、背景を透明にすることも可能です。

// 

code.SetForegroundColor(0, 0, 128, 255)

code.SetBackgroundColor(255, 255, 240, 255)

// 

code.SetBackgroundColor(0, 0, 0, 0)

テキスト表示を調整する

バーコード下部のテキスト（ヒューマンリーダブル）は、表示・非表示だけでなく、サイズや配置まで細かく調整でき
ます。

code.ShowText = true                      // 

code.SetTextFontScale(1.2)                // 

code.SetTextVerticalOffsetScale(0.5)      // 

code.TextEvenSpacing = true               // 1

>  ヒント:  TextEvenSpacing  =  true
にすると、テキストが各バーの真下に揃って配置されます。見た目がすっきりするので、一般的な1Dバーコードでは
おすすめです。

バー幅を微調整する（印刷のにじみ対策）

実際に印刷すると、インクのにじみで黒バーが太くなることがあります。

バーコードリーダーの読み取り精度が落ちてしまう場合は、この機能で補正しましょう。

code.SetPxAdjustBlack(-1)  // 1px

code.SetPxAdjustWhite(1)   // 1px

幅ぴったり描画

指定した幅にバーコードをぴったり収めたい場合に使います。
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code.SetFitWidth(true)   // 

code.SetFitWidth(false)  // 

導入はとてもシンプルです。Go Modules に対応しているので、go get 一発で完了します。
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3.1 ダウンロード

https://www.pao.ac/barcode.go/#download

パッケージ 内容 こんな方に

Easy 2 Steps QRコード生成の最小RESTサーバー まずは動かしてみたい方

All-in-One 全18種対応のフル機能RESTサーバー 本格的に評価したい方

WASM版 ブラウザで動くデモ Go以外の環境でも試したい方

- 15 -



Barcode.Go マニュアル

3.2 go get でインストール

go get github.com/pao-company/barcode-go

これだけです。CGO不要なので、クロスコンパイル環境でもそのまま使えます。
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3.3 ファイル構成

Easy 2 Steps サンプル

barcode_go_easy2steps/

├── main.go               # QR100

├── go.mod

├── templates/

│   └── index.html         # Web

└── barcode-go/            # 

    ├── barcode.go

    ├── base.go

    ├── qr.go

    └── ...

起動方法

cd barcode_go_easy2steps

go run main.go

# → http://localhost:5700

ブラウザで開くと、QRコードの生成画面が表示されます。テキストを入力して「生成」ボタンを押すだけ。

>  ヒント:  サンプルはすべてGo標準ライブラリの  net/http
だけで構成されています。フレームワーク不要で動くため、Go初心者にも優しい設計です。

ここでは、コピー＆ペーストですぐ動くサンプルを紹介します。
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4.1 QRコードをPNGで生成

package main

import (

    "fmt"

    "os"

    barcode "github.com/pao-company/barcode-go"

)

func main() {

    // Step 1: QR

    qr := barcode.NewQRCode(barcode.FormatPNG)

    qr.SetErrorCorrectionLevel(barcode.QREccM) // : Medium

    // Step 2: 

    err := qr.Draw("https://www.pao.ac/", 300)

    if err != nil {

        fmt.Println("Error:", err)

        return

    }

    // Base64 — HTML

    base64, _ := qr.GetImageBase64()

    fmt.Println("Base64:", base64[:50], "...")

    // 

    imageBytes := qr.GetImageMemory()

    os.WriteFile("qr.png", imageBytes, 0644)

    fmt.Println("Saved: qr.png")

}
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4.2 1DバーコードをSVGで生成

package main

import (

    "fmt"

    "os"

    barcode "github.com/pao-company/barcode-go"

)

func main() {

    code := barcode.NewCode128(barcode.FormatSVG)

    code.ShowText = true

    code.TextEvenSpacing = true

    err := code.Draw("Hello-2026", 400, 100)

    if err != nil {

        fmt.Println("Error:", err)

        return

    }

    svg, _ := code.GetSVG()

    os.WriteFile("code128.svg", []byte(svg), 0644)

    fmt.Println("Saved: code128.svg")

}
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4.3 REST APIサーバーで提供

Go の真骨頂——サーバーサイドでバーコードを生成し、APIとして提供する例です。

package main

import (

    "encoding/json"

    "log"

    "net/http"

    barcode "github.com/pao-company/barcode-go"

)

func main() {

    http.HandleFunc("/api/qr", func(w http.ResponseWriter, r *http.Request) {

        code := r.URL.Query().Get("code")

        if code == "" {

            code = "https://www.pao.ac/"

        }

        qr := barcode.NewQRCode(barcode.FormatPNG)

        qr.Draw(code, 300)

        b64, _ := qr.GetImageBase64()

        w.Header().Set("Content-Type", "application/json")

        json.NewEncoder(w).Encode(map[string]string{

            "base64": b64,

        })

    })

    log.Println("→ http://localhost:8080/api/qr?code=Hello")

    log.Fatal(http.ListenAndServe(":8080", nil))

}

curl  http://localhost:8080/api/qr?code=Hello  で  JSON  が返ってきます。フロントエンドから  fetch
するだけでバーコードが表示できます。

ここからは、バーコードの種類ごとに実践的なサンプルを紹介します。

各バーコードが「どんな場面で使われているか」も添えていますので、用途に合ったバーコードを選ぶ参考にしてくだ
さい。
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5.1 1次元バーコード — 物流・工業の定番

Code39 — 工場で最も古くから使われるバーコード

英数字と一部の記号を表現できます。スタート/ストップコード（*）で囲まれるのが特徴です。

code := barcode.NewCode39(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.ShowStartStop = true   // *HELLO123* 

err := code.Draw("HELLO123", 400, 100)

入力可能: 数字（0-9）、英大文字（A-Z）、記号（- . $ / + % スペース）

Code93 — Code39の高密度版

Code39と同じ文字を、より狭いスペースでエンコードできます。さらにASCII全文字に対応。

code := barcode.NewCode93(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("Hello123", 400, 100)

Code128 — 物流業界の標準

ASCII全文字に対応し、数字は高密度でエンコードできるため、物流伝票で広く使われています。コードモードは通常
Code128Auto にしておけば、最短幅になるよう自動で最適化されます。

code := barcode.NewCode128(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.CodeMode = barcode.Code128Auto  // AUTO / A / B / C

err := code.Draw("Hello123", 400, 100)

コードモード 定数 説明

AUTO Code128Auto 自動で最短幅に最適化（おすすめ）

A Code128CodeA 制御文字 + 数字 + 英大文字

B Code128CodeB 数字 + 英大文字 + 英小文字 + 記号

C Code128CodeC 数字のみ（2桁ずつ高密度エンコード）

>  ヒント:  AUTO  モードでは、データの内容を解析して  CODE-A  /  B  /  C
を動的に切り替え、最短幅になるよう自動最適化します。特別な理由がなければ AUTO のままで問題ありません。
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NW-7 (Codabar) — 宅配便の送り状でおなじみ

先頭と末尾にスタート/ストップコード（A/B/C/D）を付けるのがルールです。

code := barcode.NewNW7(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.ShowStartStop = true

err := code.Draw("A1234567A", 400, 100)

ITF — 段ボール箱でよく見るバーコード

Interleaved  2  of
5。バーとスペースを交互に使って2桁ずつエンコードするため、高密度です。入力は偶数桁である必要があります。

code := barcode.NewITF(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("123456", 400, 100)
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5.2 2次元バーコード — 大容量データを小さな面積に

QRコード — 日本発、世界で最も使われている2Dコード

URL、テキスト、連絡先——なんでも格納できる万能選手です。日本語もそのままエンコードできます。

qr := barcode.NewQRCode(barcode.FormatPNG)

qr.SetStringEncoding("utf-8")

qr.SetErrorCorrectionLevel(barcode.QREccM)  // L(7%) / M(15%) / Q(25%) / H(30%)

qr.SetVersion(0)                             // 0=

err := qr.Draw("https://www.pao.ac/", 300)

誤り訂正レベル 定数 復元能力 こんなときに

L QREccL 約7% データ量を最優先したい

M QREccM 約15% 一般的な用途（おすすめ）

Q QREccQ 約25% やや過酷な環境（汚れ・傷）

H QREccH 約30% ロゴを重ねたい場合にも

DataMatrix — 極小マーキングの世界標準

電子部品やヘルスケア製品の超小型マーキングに使われています。小さくても大容量。

dm := barcode.NewDataMatrix(barcode.FormatPNG)

dm.SetStringEncoding("utf-8")

dm.SetCodeSize(barcode.DxSzAuto)

dm.SetEncodeScheme(barcode.DxSchemeAutoBest)

err := dm.Draw("Hello World", 200)

PDF417 — 運転免許証にも使われている大容量コード

1次元バーコードを積み重ねたような構造で、テキスト・数字・バイナリの大量データを格納できます。

pdf := barcode.NewPDF417(barcode.FormatPNG)

pdf.SetStringEncoding("utf-8")

pdf.SetErrorLevel(barcode.PDF417ErrorLevel2)

pdf.SetColumns(3)

pdf.SetAspectRatio(3.0)

pdf.SetYHeight(3)

err := pdf.Draw("Hello World", 400, 100)
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5.3 GS1系バーコード — 流通のインフラ

GS1-128 — AI（アプリケーション識別子）で情報を構造化

ロット番号、有効期限、重量——さまざまな情報をAIコードで構造化して格納します。

gs1 := barcode.NewGS1_128(barcode.FormatPNG)

gs1.ShowText = true

gs1.TextEvenSpacing = true

err := gs1.Draw("[01]04912345123459[10]ABC123", 500, 120)

特殊文字 意味

[AI] AIを角括弧で表記（テキスト表示で括弧表示）

{FNC1} ファンクション1（可変長フィールドの区切り）

コンビニバーコード（標準料金代理収納）

公共料金の払込票に印字されているあのバーコードです。DrawConvenience() で生成します。

gs1 := barcode.NewGS1_128(barcode.FormatPNG)

gs1.ShowText = true

err := gs1.DrawConvenience(

    "{FNC1}9191234500000000000000452087500401310029500", 500, 150,

)

GS1 DataBar 標準型 — 青果・精肉売り場で活躍

重量や価格情報をコンパクトにエンコードできるバーコードです。

db := barcode.NewGS1DataBar14(barcode.FormatPNG, barcode.Omnidirectional)

db.ShowText = true

err := db.Draw("1234567890128", 200, 80)

シンボルタイプ 定数 説明

標準型 Omnidirectional どの方向からでも読み取り可能

二層型 Stacked 省スペース

標準二層型 StackedOmnidirectional 二層かつ全方向対応

GS1 DataBar 拡張型 — クーポンや特売情報も格納可能
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可変長データに対応し、多層型（スタック）にも対応しています。

db := barcode.NewGS1DataBarExpanded(barcode.FormatPNG, barcode.Unstacked)

db.ShowText = true

err := db.Draw("[01]90012345678908[10]ABC123", 400, 80)

// 

dbStacked := barcode.NewGS1DataBarExpanded(barcode.FormatPNG, barcode.StackedExp)

dbStacked.SetNoOfColumns(4)

err = dbStacked.Draw("[01]90012345678908[10]ABC123", 300, 100)
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5.4 商品・郵便バーコード — 身の回りのバーコード

郵便カスタマバーコード — 郵便物を高速仕分け

長さの異なる4種類のバー（ロング・セミアッパー・セミロウワー・タイミング）で住所情報を表現します。幅はバー
の本数から自動計算されるため、高さだけを指定 します。

yubin := barcode.NewYubinCustomer(barcode.FormatPNG)

err := yubin.Draw("27500263-29-2-401", 25)

入力形式: 郵便番号7桁 + 住所表示番号（ハイフン区切り可）

JAN/EAN バーコード — スーパーのレジで毎日活躍

// JAN-13

jan13 := barcode.NewJAN13(barcode.FormatPNG)

jan13.ShowText = true

jan13.ExtendedGuard = true          // 

jan13.TextEvenSpacing = false       // 

err := jan13.Draw("491234567890", 300, 100)

// JAN-8

jan8 := barcode.NewJAN8(barcode.FormatPNG)

jan8.ShowText = true

jan8.ExtendedGuard = true

jan8.TextEvenSpacing = false

err = jan8.Draw("4901234", 200, 100)

チェックディジットは自動計算されるため、JAN-13なら12桁、JAN-8なら7桁を入力すればOKです。

>  ヒント:  JAN/UPCバーコードでは  ExtendedGuard  と  TextEvenSpacing
の組み合わせで見た目が変わります。商品バーコードらしい標準的な見た目にするには、ExtendedGuard=true  +
TextEvenSpacing=false の組み合わせがおすすめです。

UPC バーコード — 北米の商品コード
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// UPC-A12

upcA := barcode.NewUPC_A(barcode.FormatPNG)

upcA.ShowText = true

upcA.ExtendedGuard = true

upcA.TextEvenSpacing = false

err := upcA.Draw("01234567890", 300, 100)

// UPC-E8

upcE := barcode.NewUPC_E(barcode.FormatPNG)

upcE.ShowText = true

upcE.ExtendedGuard = true

upcE.TextEvenSpacing = false

err = upcE.Draw("0123456", 200, 100)

ここからは、全メソッドの詳細なリファレンスです。

各メソッドのパラメータ、戻り値、デフォルト値を網羅しています。
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6.1 共通メソッド（全バーコード）

すべてのバーコード型で使用できるメソッドです。

SetOutputFormat(format string)

出力形式を設定します。

パラメータ 型 説明

format string "png", "jpeg", "svg"

code.SetOutputFormat(barcode.FormatPNG)   // PNGBase64— 

code.SetOutputFormat(barcode.FormatJPEG)  // JPEG

code.SetOutputFormat(barcode.FormatSVG)   // SVG

デフォルト: "png"（コンストラクタで指定）

SetForegroundColor(r, g, b, a uint8)

前景色（バーの色）を設定します。

パラメータ 型 説明

r uint8 赤（0〜255）

g uint8 緑（0〜255）

b uint8 青（0〜255）

a uint8 透明度（0=透明 〜 255=不透明）

code.SetForegroundColor(0, 0, 0, 255)      // 

code.SetForegroundColor(0, 0, 128, 255)    // 

code.SetForegroundColor(255, 0, 0, 128)    // 

SetBackgroundColor(r, g, b, a uint8)

背景色を設定します。

code.SetBackgroundColor(255, 255, 255, 255)  // 

code.SetBackgroundColor(255, 255, 240, 255)  // 

code.SetBackgroundColor(0, 0, 0, 0)          // 

SetPxAdjustBlack(adj int) / SetPxAdjustWhite(adj int)

- 28 -



Barcode.Go マニュアル

黒バー / 白スペースの幅を微調整します。印刷時のにじみ補正に使います。

code.SetPxAdjustBlack(-1)  // 1px

code.SetPxAdjustWhite(1)   // 1px

デフォルト: 0

SetFitWidth(fit bool)

指定した幅にぴったり収めるかどうかを設定します。

デフォルト: false

>  仕組み:  true  の場合、バーの幅に小数ピクセルを使用して指定幅にぴったり収めます。false
の場合は整数ピクセルのみ使用するため、指定幅より若干小さくなることがあります。

GetImageBase64() (string, error)

Base64エンコードされたデータURIを返します。

戻り値:

・PNG: "data:image/png;base64,..." 形式
・JPEG: "data:image/jpeg;base64,..." 形式
・SVG: エラー（SVGモードでは GetSVG() を使用）

GetSVG() (string, error)

SVG文字列を返します（SVGモード時のみ）。

戻り値: "<svg xmlns="...">...</svg>" 形式

GetImageMemory() []byte

PNG/JPEGのバイト列を返します。ファイル保存や HTTP レスポンスに直接使用できます。
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6.2 1次元バーコード共通メソッド

1次元バーコード（郵便カスタマバーコードを除く）で共通して使用できるフィールドとメソッドです。

Draw(code string, width, height int) error

バーコードを生成します。

パラメータ 型 説明

code string エンコードするデータ

width int 画像の幅（px）

height int 画像の高さ（px）

err := code.Draw("HELLO123", 400, 100)

ShowText bool

バーコード下部のテキスト表示を切り替えます。

デフォルト: true

TextEvenSpacing bool

テキストの均等割付を設定します。

code.TextEvenSpacing = true   // 1

code.TextEvenSpacing = false  // 

デフォルト: true

>  使い分けのコツ:  一般的な1Dバーコード（Code39,  Code128など）では
true（均等割付）にすると、各文字がバーの真下に揃って読みやすくなります。一方、JAN/UPCバーコードでは  false
にして ExtendedGuard = true と組み合わせるのが、商品バーコードとしての標準的な見た目です。

SetTextFontScale(scale float64)

テキストのフォントサイズ倍率を設定します。

デフォルト: 1.0

SetTextVerticalOffsetScale(scale float64)
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テキストの垂直オフセット倍率を設定します。値を小さくするとバーとテキストの間隔が狭くなります。

デフォルト: 1.0

SetMinLineWidth(width int)

最小線幅を設定します（ITF, Matrix2of5, NEC2of5 向け）。

デフォルト: 1
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6.3 Code39

型: Code39 — 工業用途の定番バーコード

コンストラクタ: NewCode39(outputFormat string) *Code39

入力可能文字: 0-9, A-Z, - . $ / + %, スペース

固有フィールド

ShowStartStop bool

テキスト表示時にスタート/ストップコード（*）を表示するかどうか。

デフォルト: true

使用例

code := barcode.NewCode39(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.ShowStartStop = true

err := code.Draw("HELLO123", 400, 100)
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6.4 Code93

型: Code93 — Code39の高密度版

コンストラクタ: NewCode93(outputFormat string) *Code93

入力可能文字: ASCII全文字（0x00〜0x7F）

固有フィールド: なし（共通フィールドのみ）

使用例

code := barcode.NewCode93(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("Hello123!@#", 400, 100)
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6.5 Code128

型: Code128 — 物流の標準バーコード

コンストラクタ: NewCode128(outputFormat string) *Code128

入力可能文字: ASCII全文字（0x00〜0x7F）

固有フィールド

CodeMode int

定数 対応文字

Code128Auto 自動で最短幅に最適化（おすすめ）

Code128CodeA 制御文字 + 数字 + 英大文字 + 一部記号

Code128CodeB 数字 + 英大文字 + 英小文字 + 記号

Code128CodeC 数字のみ（2桁ずつ高密度エンコード）

デフォルト: Code128Auto

使用例

code := barcode.NewCode128(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.CodeMode = barcode.Code128Auto

err := code.Draw("Hello123", 400, 100)
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6.6 GS1-128

型: GS1_128 — GS1標準準拠。物流・医療分野で使用

コンストラクタ: NewGS1_128(outputFormat string) *GS1_128

入力形式: AI（アプリケーション識別子）とデータの組み合わせ

固有メソッド

Draw(code string, width, height int) error

通常のGS1-128バーコードを生成します。

DrawConvenience(code string, width, height int) error

標準料金代理収納用（コンビニバーコード）を生成します。

使用例

// GS1-128

gs1 := barcode.NewGS1_128(barcode.FormatPNG)

gs1.ShowText = true

gs1.TextEvenSpacing = true

err := gs1.Draw("[01]04912345123459[10]ABC123", 500, 120)

// 

gs1c := barcode.NewGS1_128(barcode.FormatPNG)

gs1c.ShowText = true

err = gs1c.DrawConvenience(

    "{FNC1}9191234500000000000000452087500401310029500", 500, 150,

)
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6.7 NW-7（Codabar）

型: NW7 — 宅配便・図書館で使用

コンストラクタ: NewNW7(outputFormat string) *NW7

入力可能文字: 0-9, - $ : / . +, スタート/ストップ: A B C D

固有フィールド

ShowStartStop bool

デフォルト: true

使用例

code := barcode.NewNW7(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

code.ShowStartStop = true

err := code.Draw("A1234567A", 400, 100)
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6.8 ITF（Interleaved 2 of 5）

型: ITF — 集合包装用バーコード

コンストラクタ: NewITF(outputFormat string) *ITF

入力可能文字: 0-9 のみ（偶数桁必須）

固有フィールド: なし

使用例

code := barcode.NewITF(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("123456", 400, 100)
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6.9 Matrix 2of5

型: Matrix2of5 — 工業用の数字専用バーコード

コンストラクタ: NewMatrix2of5(outputFormat string) *Matrix2of5

入力可能文字: 0-9 のみ

固有フィールド: なし

使用例

code := barcode.NewMatrix2of5(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("1234567890", 400, 100)
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6.10 NEC 2of5

型: NEC2of5 — 日本の工業用途向け

コンストラクタ: NewNEC2of5(outputFormat string) *NEC2of5

入力可能文字: 0-9 のみ

固有フィールド: なし

使用例

code := barcode.NewNEC2of5(barcode.FormatPNG)

code.ShowText = true

code.TextEvenSpacing = true

err := code.Draw("1234567890", 400, 100)
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6.11 JAN-8（EAN-8）

型: JAN8 — 小型商品用の8桁バーコード

コンストラクタ: NewJAN8(outputFormat string) *JAN8

入力: 数字7桁（チェックディジットは自動計算）

固有フィールド

ExtendedGuard bool

ガードバーの拡張。true にすると商品バーコードとしての標準的な外観になります。

デフォルト: true

テキスト表示パターン

ExtendedGuard TextEvenSpacing 見た目

true false 商品バーコードの標準スタイル。 ガードバーが長く伸び、テキストはセクション別に配置

true true ガードバーが長く伸び、テキストは均等割付

false false フラットバー + テキスト中央寄せ

false true フラットバー + テキスト均等割付

使用例

code := barcode.NewJAN8(barcode.FormatPNG)

code.ShowText = true

code.ExtendedGuard = true

code.TextEvenSpacing = false

err := code.Draw("4901234", 200, 100)
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6.12 JAN-13（EAN-13）

型: JAN13 — 日本の標準的な商品バーコード（13桁）

コンストラクタ: NewJAN13(outputFormat string) *JAN13

入力: 数字12桁（チェックディジットは自動計算）

固有フィールド

ExtendedGuard bool

6.11 JAN-8 と同じです。デフォルト: true

>  JAN-13の特徴:
拡張ガードバー有効時、先頭1桁がバーコード左側にプレフィックスとして表示されます。日本の商品バーコードの「4
9」や「45」で始まるおなじみの見た目です。

使用例

code := barcode.NewJAN13(barcode.FormatPNG)

code.ShowText = true

code.ExtendedGuard = true

code.TextEvenSpacing = false

err := code.Draw("491234567890", 300, 100)
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6.13 UPC-A

型: UPC_A — 北米の商品コード（12桁）

コンストラクタ: NewUPC_A(outputFormat string) *UPC_A

入力: 数字11桁（チェックディジットは自動計算）

固有フィールド

ExtendedGuard bool

6.11 JAN-8 と同じです。デフォルト: true

使用例

code := barcode.NewUPC_A(barcode.FormatPNG)

code.ShowText = true

code.ExtendedGuard = true

code.TextEvenSpacing = false

err := code.Draw("01234567890", 300, 100)
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6.14 UPC-E

型: UPC_E — UPC-Aの短縮版（8桁）。小型商品用

コンストラクタ: NewUPC_E(outputFormat string) *UPC_E

入力: 数字6桁（チェックディジットは自動計算）

固有フィールド

ExtendedGuard bool

6.11 JAN-8 と同じです。デフォルト: true

使用例

code := barcode.NewUPC_E(barcode.FormatPNG)

code.ShowText = true

code.ExtendedGuard = true

code.TextEvenSpacing = false

err := code.Draw("0123456", 200, 100)
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6.15 GS1 DataBar 標準型

型: GS1DataBar14 — 生鮮食品向けのコンパクトバーコード

コンストラクタ: NewGS1DataBar14(outputFormat string, symbolType SymbolType14) *GS1DataBar14

入力: 数字 8〜13桁（チェックディジットは自動計算）

シンボルタイプ

定数 説明

Omnidirectional 標準型（どの方向からでも読み取り可能）

Stacked 二層型（省スペース）

StackedOmnidirectional 標準二層型

使用例

code := barcode.NewGS1DataBar14(barcode.FormatPNG, barcode.Omnidirectional)

code.ShowText = true

err := code.Draw("1234567890128", 200, 80)
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6.16 GS1 DataBar 限定型

型: GS1DataBarLimited — 先頭桁が0または1に限定されたコンパクト版

コンストラクタ: NewGS1DataBarLimited(outputFormat string) *GS1DataBarLimited

入力: 数字 8〜13桁（先頭桁は0または1のみ）

使用例

code := barcode.NewGS1DataBarLimited(barcode.FormatPNG)

code.ShowText = true

err := code.Draw("0123456789012", 200, 60)
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6.17 GS1 DataBar 拡張型

型: GS1DataBarExpanded — 可変長データ対応

コンストラクタ:  NewGS1DataBarExpanded(outputFormat  string,  symbolType  ExpandedSymbolType)
*GS1DataBarExpanded

入力: AI + データの組み合わせ

シンボルタイプ

定数 説明

Unstacked 一層型

StackedExp 多層型（スペースが限られる場合に）

固有メソッド

SetNoOfColumns(columns int)

多層型のセグメント数（列数）を設定します。偶数推奨。デフォルト: 2

使用例

// 

db := barcode.NewGS1DataBarExpanded(barcode.FormatPNG, barcode.Unstacked)

db.ShowText = true

err := db.Draw("[01]90012345678908[10]ABC123", 400, 80)

// 

dbStacked := barcode.NewGS1DataBarExpanded(barcode.FormatPNG, barcode.StackedExp)

dbStacked.SetNoOfColumns(4)

err = dbStacked.Draw("[01]90012345678908[10]ABC123", 300, 100)
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6.18 郵便カスタマバーコード

型: YubinCustomer — 日本郵便の住所バーコード

コンストラクタ: NewYubinCustomer(outputFormat string) *YubinCustomer

入力: 郵便番号7桁 + 住所表示番号（ハイフン区切り可）

固有メソッド

Draw(code string, height int) error

他のバーコードと異なり、幅は自動計算 されるため高さのみ指定します。

>  注意:  テキスト関連フィールド（ShowText,  TextEvenSpacing  等）は使用できません。SetForegroundColor(),
SetBackgroundColor() は使用可能です。

使用例

code := barcode.NewYubinCustomer(barcode.FormatPNG)

err := code.Draw("27500263-29-2-401", 25)
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6.19 QRコード

型: QRCode — 日本発、世界で最も普及している2次元バーコード

コンストラクタ: NewQRCode(outputFormat string) *QRCode

入力: 数字、英数字、バイナリ、漢字（Shift-JIS）

固有メソッド

Draw(code string, size int) error

パラメータ 型 説明

code string エンコードするデータ

size int 画像サイズ（px、正方形）

SetStringEncoding(encoding string)

値 説明

"utf-8" UTF-8（おすすめ）

"shift-jis" Shift-JIS（レガシー環境との互換性が必要な場合）

デフォルト: "utf-8"

SetErrorCorrectionLevel(level int)

定数 復元能力 こんなときに

QREccL 約7% データ量優先

QREccM 約15% 一般的な用途（おすすめ）

QREccQ 約25% 汚れ・傷への耐性が必要

QREccH 約30% 最高品質。ロゴ重ね時にも

デフォルト: QREccM

SetVersion(version int)

QRコードのバージョン（セルの数）を指定します。0（自動）〜 40。

デフォルト: 0（データに応じた最小バージョンを自動選択）

SetEncodeMode(mode string)
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定数 説明

QRModeBinary バイトデータ（デフォルト、おすすめ）

QRModeNumeric 数字のみ（最高効率）

QRModeAlphaNumeric 英数字

QRModeKanji 漢字（Shift-JIS）

デフォルト: QRModeBinary

使用例

qr := barcode.NewQRCode(barcode.FormatSVG)

qr.SetStringEncoding("utf-8")

qr.SetErrorCorrectionLevel(barcode.QREccM)

qr.SetVersion(0)

qr.SetFitWidth(true)

err := qr.Draw("https://www.pao.ac/", 300)

svg, _ := qr.GetSVG()
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6.20 DataMatrix

型: DataMatrix — 超小型マーキングの世界標準

コンストラクタ: NewDataMatrix(outputFormat string) *DataMatrix

入力: ASCII文字、バイナリデータ、GS1データ（{FNC1} で開始）

固有メソッド

Draw(code string, size int) error

パラメータ 型 説明

code string エンコードするデータ

size int 画像サイズ（px、正方形）

SetStringEncoding(encoding string)

"utf-8"（デフォルト）または "shift-jis"

SetCodeSize(size int)

主な定数 説明

DxSzAuto 自動（おすすめ）

DxSz10x10 〜 DxSz144x144 正方形

DxSz8x18, DxSz8x32 等 矩形

デフォルト: DxSzAuto

SetEncodeScheme(scheme int)

定数 説明

DxSchemeAutoBest 自動選択（おすすめ）

DxSchemeAscii ASCII

DxSchemeC40 英数字

DxSchemeText テキスト（小文字優先）

DxSchemeX12 ANSI X12 EDI

DxSchemeEdifact EDIFACT

DxSchemeBase256 バイナリ

デフォルト: DxSchemeAutoBest
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GS1-DataMatrix

GS1データを格納する場合は、先頭に {FNC1} を付けます。

dm.Draw("{FNC1}0100012345678905{FNC1}10ABC123", 200)

使用例

dm := barcode.NewDataMatrix(barcode.FormatSVG)

dm.SetStringEncoding("utf-8")

dm.SetCodeSize(barcode.DxSzAuto)

dm.SetEncodeScheme(barcode.DxSchemeAutoBest)

dm.SetFitWidth(true)

err := dm.Draw("Hello World", 200)

svg, _ := dm.GetSVG()
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6.21 PDF417

型: PDF417 — 大容量2次元バーコード。運転免許証・搭乗券に使用

コンストラクタ: NewPDF417(outputFormat string) *PDF417

入力: テキスト、数字、バイナリ

固有メソッド

Draw(code string, width, height int) error

パラメータ 型 説明

code string エンコードするデータ

width int 画像の幅（px）

height int 画像の高さ（px）

SetStringEncoding(encoding string)

"utf-8"（デフォルト）または "shift-jis"

SetErrorLevel(level int)

定数 訂正能力

PDF417ErrorLevel0 最小

PDF417ErrorLevel1 低

PDF417ErrorLevel2 標準（おすすめ）

PDF417ErrorLevel3 〜 PDF417ErrorLevel8 高〜最大

デフォルト: PDF417ErrorLevel2

SetColumns(columns int)

列数。0=自動、1〜30で指定。デフォルト: 0

SetRows(rows int)

行数。0=自動、3〜90で指定。デフォルト: 0

SetAspectRatio(ratio float64)

縦横比。1.0〜10.0。デフォルト: 3.0
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SetYHeight(height int)

Y方向の高さ係数。1〜10。デフォルト: 3

使用例

pdf := barcode.NewPDF417(barcode.FormatSVG)

pdf.SetStringEncoding("utf-8")

pdf.SetErrorLevel(barcode.PDF417ErrorLevel2)

pdf.SetColumns(4)

pdf.SetRows(0)

pdf.SetAspectRatio(3.0)

pdf.SetYHeight(3)

pdf.SetFitWidth(true)

err := pdf.Draw("Hello World", 400, 100)

svg, _ := pdf.GetSVG()

Barcode.Go  は  Go  の  WASM  ターゲット（GOOS=js
GOARCH=wasm）でコンパイルすることで、ブラウザ上でも動作します。

ビルド方法

cd wasm

GOOS=js GOARCH=wasm go build -o barcode.wasm .

Windows の場合:

set GOOS=js

set GOARCH=wasm

go build -o barcode.wasm .

set GOOS=

set GOARCH=

必要ファイル

wasm/

├── barcode.wasm     ← Go WASM 

├── wasm_exec.js     ← Go  JS $GOROOT/misc/wasm/

└── index.html       ← 

wasm_exec.js は Go のインストールディレクトリに含まれています。

使い方
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<script src="wasm_exec.js"></script>

<script>

const go = new Go();

WebAssembly.instantiateStreaming(fetch("barcode.wasm"), go.importObject)

    .then(result => {

        go.run(result.instance);

        // JavaScript  Go 

        const base64 = drawQR("https://www.pao.ac/", 300);

        document.getElementById("barcode").src = base64;

    });

</script>

> ヒント: WASM版のダウンロードパッケージには、すぐに試せるデモ HTML が含まれています。
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Go バージョン

項目 要件

Go 1.21 以降
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依存ライブラリ

パッケージ 用途

golang.org/x/image/font/opentype TrueType フォント描画（テキスト表示）

上記以外はすべて Go 標準ライブラリのみを使用しています。CGO は不要です。
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対応OS（WASM版除く）

Go がサポートするすべてのOS / アーキテクチャで動作します。

OS アーキテクチャ

Windows amd64, arm64

macOS amd64 (Intel), arm64 (Apple Silicon)

Linux amd64, arm64, arm
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WASM版の対応ブラウザ

ブラウザ 対応バージョン

Google Chrome 57 以降

Mozilla Firefox 53 以降

Safari 11 以降

Microsoft Edge 16 以降
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使用許諾

Barcode.Go
の使用について、利用者様と有限会社パオ・アット・オフィス（以下「弊社」）は、以下の各項目に同意するものとし
ます。

1. 使用許諾書

この使用許諾書は、利用者様がお使いのパソコンにおいて  Barcode.Go
を使用する場合に同意しなければならない契約書です。

2. 同意

利用者様が Barcode.Go を使用する時点で、本使用許諾書に同意されたものとします。

3. ライセンスの購入

製品版を使用して開発を行う場合、1  台の開発用コンピュータにつき  1
ライセンスの購入が必要です。お客様環境等、開発コンピュータでないマシンでの使用にはライセンスは不要です（ラ
ンタイムライセンスフリー）。

4. 著作権

Barcode.Go の著作権は、いかなる場合においても弊社に帰属いたします。

5. 免責

Barcode.Go
の使用によって、直接的または間接的に生じたいかなる損害に対しても、弊社は補償賠償の責任を負わないものとしま
す。

6. 禁止事項

Barcode.Go
およびその複製物を第三者に譲渡・貸与することはできません。開発ツールとしての再販・再配布を禁止します。ただ
し、モジュールとして組み込みを行い再販・再配布する場合は問題ございません。

7. 保証の範囲

弊社は  Barcode.Go  の仕様を予告なしに変更することがあります。利用者様への情報提供は弊社  Web
サイトにて行います。

8. 適用期間

本使用許諾条件は利用者様が Barcode.Go を使用した日より有効です。
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ライセンス

Barcode.Go は有限会社パオ・アット・オフィスの製品です。

試用版:
生成されるバーコードに「SAMPLE」の透かしが表示されます。機能制限はありません。すべてのバーコード種類・設
定を自由にお試しいただけます。

製品版: 透かしなしでバーコードを生成できます。ライセンスの詳細は弊社Webサイトをご確認ください。
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お問い合わせ

有限会社 パオ・アット・オフィス

Webサイト https://www.pao.ac/

製品ページ https://www.pao.ac/barcode.go/

メール info@pao.ac
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関連製品

製品 対応環境

Barcode.net .NET（C#, VB.NET）

Barcode.jar Java

Barcode.php PHP

Barcode.wasm JavaScript / TypeScript（ブラウザ）

Barcode.py Python

Barcode.Flutter Flutter / Dart

Barcode.Go ユーザーズマニュアル

バージョン 1.0 — 2026年2月

© 2026 有限会社 パオ・アット・オフィス
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